Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.5.273

Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer  

Hwang, Namgyung (Department of Electrical and Computer Engineering, Pusan National University)
Lim, Yooseong (Department of Electrical and Computer Engineering, Pusan National University)
Lee, Jeong Seok (Department of Electrical and Computer Engineering, Pusan National University)
Lee, Sehyeong (Department of Electrical and Computer Engineering, Pusan National University)
Yi, Moonsuk (Department of Electrical and Computer Engineering, Pusan National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.5, 2018 , pp. 273-277 More about this Journal
Abstract
This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.
Keywords
Amorphous oxide semiconductor; Thin film transistor; IZO; Aluminum oxide; Diffusion layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. Powell, IEEE Trans. Electron Devices, 36, 2753 (1989). [DOI: https://doi.org/10.1109/16.40933]   DOI
2 C. Park, Y. Lim, S. Ha, Y. Im, M. Jang, S. I. Choi, J. I. Park, and M. Yi, J. Soc. Inf. Disp., 23, 371 (2015). [DOI: https://doi.org/10.1002/jsid.321]   DOI
3 E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). [DOI: https://doi.org/10.1063/1.3387819]   DOI
4 B. D. Ahn, H. S. Shin, H. J. Kim, J. S. Park, and J. K. Jeong, Appl. Phys. Lett., 93, 203506 (2008). [DOI: https:// doi.org/10.1063/1.3028340]   DOI
5 A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett., 94, 133502 (2009). [DOI: https://doi.org/10.1063/1.3112566]   DOI
6 C. Avis and J. Jang, J. Mater. Chem., 21, 10649 (2011). [DOI: https://doi.org/10.1039/c1jm12227d]   DOI
7 M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang Jr, J. Cryst. Growth, 220, 254 (2000). [DOI: https://doi.org/10.1016/ S0022-0248(00)00834-4]   DOI
8 J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, Thin Solid Films, 520, 1679 (2012). [DOI: https://doi.org/10.1016/ j.tsf.2011.07.018]   DOI
9 J. Li, F. Zhou, H. P. Lin, W. Q. Zhu, J. H. Zhang, X. Y. Jiang, and Z. L. Zhang, Vacuum, 86, 1840 (2012). [DOI: https://doi.org/10.1016/j.vacuum.2012.04.009]   DOI
10 W. Lim, E. A. Douglas, D. P. Norton, S. J. Pearton, F. Ren, Y. W. Heo, S. Y. Son, and J. H. Yuh, J. Vac. Sci. Technol., B, 28, 116 (2010). [DOI: https://doi.org/10.1116/1.3276774]   DOI