• 제목/요약/키워드: alpha closed set

검색결과 22건 처리시간 0.024초

COUPLED FIXED POINT THEOREMS WITH APPLICATIONS

  • Chang, S.S.;Cho, Y.J.;Huang, N.J.
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.575-585
    • /
    • 1996
  • Recently, existence theorems of coupled fixed points for mixed monotone operators have been considered by several authors (see [1]-[3], [6]). In this paper, we are continuously going to study the existence problems of coupled fixed points for two more general classes of mixed monotone operators. As an application, we utilize our main results to show thee existence of coupled fixed points for a class of non-linear integral equations.

  • PDF

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

WEAK AND STRONG CONVERGENCE TO COMMON FIXED POINTS OF NON-SELF NONEXPANSIVE MAPPINGS

  • Su, Yongfu;Qin, Xiaolong
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.437-448
    • /
    • 2007
  • Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let $T_1,\;T_2\;and\;T_3\;:\;K{\rightarrow}E$ be nonexpansive mappings with nonempty common fixed points set. Let $\{\alpha_n\},\;\{\beta_n\},\;\{\gamma_n\},\;\{\alpha'_n\},\;\{\beta'_n\},\;\{\gamma'_n\},\;\{\alpha'_n\},\;\{\beta'_n\}\;and\;\{\gamma'_n\}$ be real sequences in [0, 1] such that ${\alpha}_n+{\beta}_n+{\gamma}_n={\alpha}'_n+{\beta'_n+\gamma}'_n={\alpha}'_n+{\beta}'_n+{\gamma}'_n=1$, starting from arbitrary $x_1{\in}K$, define the sequence $\{x_n\}$ by $$\{zn=P({\alpha}'_nT_1x_n+{\beta}'_nx_n+{\gamma}'_nw_n)\;yn=P({\alpha}'_nT_2z_n+{\beta}'_nx_n+{\gamma}'_nv_n)\;x_{n+1}=P({\alpha}_nT_3y_n+{\beta}_nx_n+{\gamma}_nu_n)$$ with the restrictions $\sum^\infty_{n=1}{\gamma}_n<\infty,\;\sum^\infty_{n=1}{\gamma}'_n<\infty,\; \sum^\infty_{n=1}{\gamma}'_n<\infty$. (i) If the dual $E^*$ of E has the Kadec-Klee property, then weak convergence of a $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is proved; (ii) If $T_1,\;T_2\;and\;T_3$ satisfy condition(A'), then strong convergence of $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is obtained.

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS

  • Taskara, Necati;Tollu, Durhasan T.;Touafek, Nouressadat;Yazlik, Yasin
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.301-319
    • /
    • 2020
  • In this paper, we show that the system of difference equations $x_n={\frac{ay^p_{n-1}+b(x_{n-2}y_{n-1})^{p-1}}{cy_{n-1}+dx^{p-1}_{n-2}}}$, $y_n={\frac{{\alpha}x^p_{n-1}+{\beta}(y_{n-2}x_{n-1})^{p-1}}{{\gamma}x_{n-1}+{\delta}y^{p-1}_{n-2}}}$, n ∈ ℕ0 where the parameters a, b, c, d, α, β, γ, δ, p and the initial values x-2, x-1, y-2, y-1 are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

A Regression of Miller Fisher Syndrome using Photic Feedback: Possibility of a New Complementary Therapy

  • Kamei, Tsutomu;Toriumi, Yoshitaka;Kumano, Hiroaki;Yasushi, Mitsuo
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.530-533
    • /
    • 2002
  • We present a case of The Miller Fisher Syndrome (MFS), showing a remission during a recently developed noninvasive therapy. Two weeks after an appearance of cough and fever, a 35 years old Japanese male developed diplopia, ataxia and numbness of his fingers and toes. He was diagnosed as MFS, and a fixed dose of prednisolone acetate (60mg/day) was administered for 3 months, but little improvement was observed. In addition to this administration, we tried 20 minutes of Photic Feedback (PFB) treatment daily for 40 days. The PFB system detects brain waves from the subject's forehead, and extracts alpha waves by the band-pass filter with a center frequency set at 10.0Hz. It also simultaneously modulates the augmentation of a red light-emitting diode, corresponding with the amplitudes of the extracted alpha waves. In this treatment, this adjusted photic stimulation was given to the subject's closed eyes, resulting in the effective alpha enhancement by photic driving response. The numbness increased during each of PFB treatment, but the symptoms started to improve gradually after 10 days. Other symptoms disappeared after 40 days. CD20 levels increased with this treatment. This case suggests that the PFB treatment may speed the natural remission of MFS. This treatment may be worth considering in patients who suffer polyneuropathy.

  • PDF

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF

APPLICATIONS OF SOFT g# SEMI CLOSED SETS IN SOFT TOPOLOGICAL SPACES

  • T. RAJENDRAKUMAR;M.S. SAGAYA ROSELIN
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.635-646
    • /
    • 2024
  • In this research work, we introduce and investigate four innovative types of soft spaces, pushing the boundaries of traditional spatial concepts. These new types of soft spaces are named as soft Tb space, soft T#b space, soft T##b space and softαT#b space. Through rigorous analysis and experimentation, we uncover and propose distinct characteristics that define and differentiate these spaces. In this research work, we have established that every soft $T_{\frac{1}{2}}$ space is a soft αT#b space, every soft Tb space is a soft αT#b space, every soft T#b space is a soft αT#b space, every soft Tb space is a soft T#b space, every soft T#b space is a soft T##b space, every soft $T_{\frac{1}{2}}$ space is a soft #Tb space and every soft Tb space is a soft #Tb space.

코어 프로그램 운동이 만성요통 환자의 균형에 미치는 영향 (The Effects of Core Program Exercise on Balance in Patients with Chronic Low Back Pain)

  • 최원제;박범석;유병국;전재근;손경현
    • 대한물리치료과학회지
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Background: The purpose of this study was to ascertain the effects of core program exercise on balance in patients with chronic low back pain. Thirty-four subjects participated in this study, these subjects were assigned into two groups, a control group(n=17) and an experimental group(n=17). Methods: The subjects in the control group were received a conservative physical therapy and in the experimental group carried out the core program exercise for 30 minutes per day, three times a week during 6 weeks. In order to evaluate the progresses of balance ability, corresponding variables were measured at two times, pre and 6th week. The balance ability was assessed using GOOD BALANCE system. The collected data were analyzed by using the paired t-test and ANCOVA. In all statistical analyses, significance level, ${\alpha}$ was set by 0.05. Results: The results of this study were as follows: 1) In the position of left standing eye closed, there were significant difference of Y in the control group and X, Y, V in the experimental group. 2) In the position of right standing eye closed, there were significant difference of Y in the control group and X, Y, V in the experimental group. 3) In the position of dynamic balance 1, there were significant difference APV in experimental groups. 4) In the position of dynamic balance 2, there were significant difference MLV in experimental groups. 5) There were significances between the two group of X, V in static balance and APV in dynamic balance. Conclusion: The above results indicated that a core program exercise improved balance abilities in patients with chronic low back. The further studies should be focused at development of various modified forms of the core program exercise in keeping up the improvement effect of this exercise.