• Title/Summary/Keyword: almost Hermitian

Search Result 39, Processing Time 0.021 seconds

SURFACES IN 4-DIMENSIONAL SPHERE

  • Yamada, Akira
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.121-136
    • /
    • 1996
  • Met $\tilde{M} = (\tilde{M}, \tilde{J}, <>)$ be an almost Hermitian manifold and M a submanifold of $\tilde{M}$. According to the behavior of the tangent bundle TM with respect to the action of $\tilde{J}$, we have two typical classes of submanifolds. One of them is the class of almost complex submanifolds and another is the class of totally real submanifolds. In 1990, B. Y. Chen [4], [5] introduced the concept of the class of slant submanifolds which involve the above two classes. He used the Wirtinger angle to measure the behavior of TM with respect to the action of $\tilde{J}$.

  • PDF

H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

  • Park, Kwang-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.441-460
    • /
    • 2016
  • We introduce the notions of h-v-semi-slant submersions and almost h-v-semi-slant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations, investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. We find a condition for such submersions to be totally geodesic. We also obtain an inequality of a h-v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and h-v-semi-slant angle. Finally, we give examples of such maps.

On Some Properties of Riemannian Manifolds with a Generalized Connection

  • Dehkordy, Azam Etemad
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1237-1246
    • /
    • 2016
  • In this paper we study some properties of submanifolds of a Riemannian manifold equipped with a generalized connection $\hat{\nabla}$. We also consider almost Hermitian manifolds that admits a special case of this generalized connection and derive some results about the behavior of this manifolds.

THE CHARACTERISTIC CONNECTION ON 6-DIMENSIONAL ALMOST HERMITIAN MANIFOLDS

  • Kim, Hwajeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.725-733
    • /
    • 2011
  • The characteristic connection is a good substitute for the Levi-Civita connection, especially in studying non-integrable geometries. Unfortunately, not every geometric structure has the characteristic connection. In this paper we consider the space $U(3)/(U(1){\times}U(1){\times}U(1))$ with an almost Hermitian structure and prove that it has a geometric structure admitting the characteristic connection.

ON THE V-SEMI-SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

  • Park, Kwang Soon
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.173-187
    • /
    • 2021
  • In this paper, we deal with the notion of a v-semi-slant submersion from an almost Hermitian manifold onto a Riemannian manifold. We investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. Given such a map with totally umbilical fibers, we have a condition for the fibers of the map to be minimal. We also obtain an inequality of a proper v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and a v-semi-slant angle. Moreover, we give some examples of such maps and some open problems.

H-QUASI-HEMI-SLANT SUBMERSIONS

  • Sumeet Kumar;Sushil Kumar;Rajendra Prasad;Aysel Turgut Vanli
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.599-620
    • /
    • 2023
  • In this paper, h-quasi-hemi-slant submersions and almost h-quasi-hemi-slant submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds are introduced. Fundamental results on h-quasi-hemi-slant submersions: the integrability of distributions, geometry of foliations and the conditions for such submersions to be totally geodesic are investigated. Moreover, some non-trivial examples of the h-quasi-hemi-slant submersion are constructed.

CONFORMAL HEMI-SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

  • Kumar, Sumeet;Kumar, Sushil;Pandey, Shashikant;Prasad, Rajendra
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.999-1018
    • /
    • 2020
  • In this paper, our main objective is to introduce the notion of conformal hemi-slant submersions from almost Hermitian manifolds onto Riemannian manifolds as a generalized case of conformal anti-invariant submersions, conformal semi-invariant submersions and conformal slant submersions. We mainly focus on conformal hemi-slant submersions from Kähler manifolds. During this manner, we tend to study and investigate integrability of the distributions which are arisen from the definition of the submersions and the geometry of leaves of such distributions. Moreover, we tend to get necessary and sufficient conditions for these submersions to be totally geodesic for such manifolds. We also provide some quality examples of conformal hemi-slant submersions.