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ON THE V-SEMI-SLANT SUBMERSIONS FROM

ALMOST HERMITIAN MANIFOLDS

Kwang Soon Park

Abstract. In this paper, we deal with the notion of a v-semi-slant sub-

mersion from an almost Hermitian manifold onto a Riemannian mani-
fold. We investigate the integrability of distributions, the geometry of

foliations, and a decomposition theorem. Given such a map with totally
umbilical fibers, we have a condition for the fibers of the map to be min-

imal. We also obtain an inequality of a proper v-semi-slant submersion

in terms of squared mean curvature, scalar curvature, and a v-semi-slant
angle. Moreover, we give some examples of such maps and some open

problems.

1. Introduction

Let F be a C∞-submersion from a (semi-)Riemannian manifold (M, gM )
onto a (semi-)Riemannian manifold (N, gN ). Then according to the conditions
on the map F : (M, gM ) 7→ (N, gN ), we have the following submersions: a
semi-Riemannian submersion and a Lorentzian submersion [6], a Riemannian
submersion ([8, 15]), an invariant submersion [24], an anti-invariant submer-
sion [20], a slant submersion ([5, 22]), an almost Hermitian submersion [25],
a contact-complex submersion [9], a quaternionic submersion [10], an almost
h-slant submersion [16], a semi-invariant submersion [23], an almost h-semi-
invariant submersion [17], a semi-slant submersions [19], an almost h-semi-slant
submersions [18], etc. The theory of isometric immersions was begun with the
work of Gauss [7] on surfaces in the Euclidean space R3 in 1827. On the
other hand, the study of Riemannian submersions was independently initiated
by B. O’Neill [15] in 1966 and A. Gray [8] in 1967 as the counterpart of the
theory of isometric immersions. Using the notion of almost Hermitian sub-
mersions, B. Watson [25] obtained a classification theorem among fibers, base
manifolds, and total manifolds in 1976. As we know, Riemannian submersions
are related with physics and have their applications in the Yang-Mills theory
([3, 26]), Kaluza-Klein theory ([2, 11]), Supergravity and superstring theories
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([12, 14]), etc. And any C∞-maps between Riemannian manifolds are useful
and important in several areas ([21], references therein).

The paper is organized as follows. In Section 2 we remind some notions
which are needed at the following sections. In Section 3 we give the definition
of a v-semi-slant submersion and obtain some properties on it. In Section 4 we
deal with an inequality of a proper v-semi-slant submersion in terms of squared
mean curvature, scalar curvature, and a v-semi-slant angle. In Section 5 we
give some examples of a v-semi-slant submersion. In Section 6 we give some
open problems.

2. Preliminaries

Let (M, gM ) and (N, gN ) be Riemannian manifolds, where M , N are C∞-
manifolds and gM , gN are Riemannian metrics on M , N , respectively. Let
F : M 7→ N be a C∞-map. We call the map F a C∞-submersion if F is
surjective and the differential (F∗)p of F at any p ∈ M has a maximal rank.
The map F is said to be a Riemannian submersion [6] if F is a C∞-submersion
and the differential F∗ preserves the lengths of horizontal vectors.

Let (M, gM , J) be an almost Hermitian manifold, where J is an almost
complex structure. A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is
called a slant submersion [22] if the angle θ = θ(X) between JX and the space
ker(F∗)p is constant for any nonzero X ∈ TpM and p ∈M .

We call the angle θ a slant angle.
Let F : (M, gM , J) 7→ (N, gN ) be a slant submersion with the slant angle θ.

If θ = 0, then we call the map F an invariant submersion [24]. If θ = π
2 , then

we call the map F an anti-invariant submersion [20].
A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a semi-

invariant submersion [23] if there is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1, J(D2) ⊂ (kerF∗)
⊥,

where D2 is the orthogonal complement of D1 in kerF∗.
A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a semi-slant

submersion [19] if there is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for nonzero
X ∈ (D2)p and p ∈M , where D2 is the orthogonal complement of D1 in kerF∗.

We call the angle θ a semi-slant angle.
As we know, a semi-slant submersion is a generalization of a slant submersion

and a semi-invariant submersion.
Let (M, gM ) and (N, gN ) be Riemannian manifolds and F : (M, gM ) 7→

(N, gN ) a C∞-map. The second fundamental form of F is given by

(∇F∗)(X,Y ) := ∇FXF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),
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where ∇F is the pullback connection and we denote conveniently by ∇ the
Levi-Civita connections of the metrics gM and gN [1]. Recall that F is said
to be harmonic if trace(∇F∗) = 0 and F is called a totally geodesic map if
(∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM) [1].

3. v-semi-slant submersions

Definition. Let (M, gM , J) be an almost Hermitian manifold and (N, gN ) a
Riemannian manifold. A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is
called a v-semi-slant submersion if there is a distribution D1 ⊂ (kerF∗)

⊥ such
that

(kerF∗)
⊥ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for
nonzero X ∈ (D2)p and p ∈M , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥.

We call the angle θ a v-semi-slant angle.

Remark 3.1. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ). If θ ∈ (0, π2 ), then
we call the map F proper. And if θ = π

2 , then we call the map F a v-semi-

invariant submersion [23]. On the other hand, if D2 = (kerF∗)
⊥, then we call

the map F a v-slant submersion and the angle θ a v-slant angle [22].

Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion. Then there is
a distribution D1 ⊂ (kerF∗)

⊥ such that

(kerF∗)
⊥ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for
nonzero X ∈ (D2)p and p ∈M , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥.

Then for X ∈ Γ((kerF∗)
⊥), we write

X = PX +QX,

where PX ∈ Γ(D1) and QX ∈ Γ(D2).
For X ∈ Γ(kerF∗), we get

JX = φX + ωX,

where φX ∈ Γ(kerF∗) and ωX ∈ Γ((kerF∗)
⊥).

For Z ∈ Γ((kerF∗)
⊥), we obtain

JZ = BZ + CZ,

where BZ ∈ Γ(kerF∗) and CZ ∈ Γ((kerF∗)
⊥).

For U ∈ Γ(TM), we have

U = VU +HU,
where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)

⊥).
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Then

(3.1) kerF∗ = BD2 ⊕ µ,

where µ is the orthogonal complement of BD2 in kerF∗ and is invariant by J .
Furthermore,

(3.2)
CD1 = D1, BD1 = 0, CD2 ⊂ D2, ω(kerF∗) = D2,

φ2 +Bω = −id, C2 + ωB = −id, ωφ+ Cω = 0, BC + φB = 0.

Define the (O’Neill) tensors T and A by

AEF = H∇HEVF + V∇HEHF,
TEF = H∇VEVF + V∇VEHF

for vector fields E,F on M , where ∇ is the Levi-Civita connection of gM .
Define

∇̂XY := V∇XY for X,Y ∈ Γ(kerF∗).

We also define

(∇ZB)W := V∇ZBW −BH∇ZW,
(∇ZC)W := H∇ZCW − CH∇ZW

for Z,W ∈ Γ((kerF∗)
⊥).

We call the tensors B and C parallel if ∇B = 0 and ∇C = 0, respectively.

Remark 3.2. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Since kerF∗ =
BD2 ⊕ µ and J(µ) = µ, each fiber F−1(y) is a generic submanifold of M for
y ∈ N [4].

Then we easily have:

Lemma 3.3. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian
manifold. Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion. Then
we get

(1)

∇̂XφY + TXωY = φ∇̂XY +BTXY,

TXφY +H∇XωY = ω∇̂XY + CTXY

for X,Y ∈ Γ(kerF∗).
(2)

V∇ZBW +AZCW = φAZW +BH∇ZW,
AZBW +H∇ZCW = ωAZW + CH∇ZW

for Z,W ∈ Γ((kerF∗)
⊥).
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(3)

∇̂XBZ + TXCZ = φTXZ +BH∇XZ,
TXBZ +H∇XCZ = ωTXZ + CH∇XZ

for X ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥).

Corollary 3.4. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemann-
ian manifold. Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion.
Then we obtain

(∇ZB)W = φAZW −AZCW,
(∇ZC)W = ωAZW −AZBW

for Z,W ∈ Γ((kerF∗)
⊥).

Proposition 3.5. Let F be a v-semi-slant submersion from an almost Her-
mitian manifold (M, gM , J) onto a Riemannian manifold (N, gN ) with the v-
semi-slant angle θ. Then we obtain

C2X = − cos2 θX for X ∈ Γ(D2).

Proof. Since

cos θ =
gM (JX,CX)

||JX|| · ||CX||
=
−gM (X,C2X)

||X|| · ||CX||
and cos θ = ||CX||

||JX|| , we have

cos2 θ = −gM (X,C2X)

||X||2
for X ∈ Γ(D2).

Hence,

C2X = − cos2 θX for X ∈ Γ(D2). �

Remark 3.6. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ) with the v-semi-slant
angle θ. Using Proposition 3.5, we easily get

gM (CX,CY ) = cos2 θgM (X,Y ),

gM (BX,BY ) = sin2 θgM (X,Y )

for X,Y ∈ Γ(D2) so that given θ ∈ [0, π2 ), there exists a local orthonormal
frame {X1, sec θCX1, . . . , Xk, sec θCXk} of D2.

Theorem 3.7. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the slant
distribution D2 is integrable if and only if we obtain

AXY = 0 and PC(∇XY −∇YX) = 0

for X,Y ∈ Γ(D2).
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Proof. Given X,Y ∈ Γ(D2) and Z ∈ Γ(D1), assuming thatAXY = 1
2V[X,Y ] =

0 [6], we obtain

gM ([X,Y ], JZ) = −gM (J(∇XY −∇YX), Z)

= −gM (B∇XY + C∇XY −B∇YX − C∇YX,Z)

= −gM (C(∇XY −∇YX), Z).

Since the integrability of D2 implies that AXY = 0 for X,Y ∈ Γ(D2), we have
the result. �

Similarly, we get:

Theorem 3.8. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then the complex
distribution D1 is integrable if and only if we have

AXY = 0 and B(∇XY −∇YX) = 0

for X,Y ∈ Γ(D1).

Lemma 3.9. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian
manifold. Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion. Then
the complex distribution D1 is integrable if and only if we get

AXY = 0 for X,Y ∈ Γ(D1).

Proof. Given X,Y ∈ Γ(D1) and Z ∈ Γ(kerF∗), assuming that AXY = 0, we
have

gM ([X,Y ], ωZ) = gM ([X,Y ], JZ) = −gM (J(∇XY −∇YX), Z)

= −gM (AXJY +H∇XJY −AY JX −H∇Y JX,Z)

= −gM (AXJY −AY JX,Z).

Since ω(kerF∗) = D2, the result follows. �

In a similar way, we have:

Lemma 3.10. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian
manifold. Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion. Then
the slant distribution D2 is integrable if and only if we obtain

AXY = 0 and P ((AXBY −AYBX) +H(∇XCY −∇Y CX)) = 0

for X,Y ∈ Γ(D2).

Lemma 3.11. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemannian
manifold. Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion with the
v-semi-slant angle θ. Assume that the tensor B is parallel. Given Z ∈ Γ(D2)
and W ∈ Γ((kerF∗)

⊥), we get

ACZCW = − cos2 θAZW.
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Proof. Since the tensor B is parallel, from Corollary 3.4, we have

AZCW = φAZW for Z,W ∈ Γ((kerF∗)
⊥).

So,

ACZCW = φACZW = −φAWCZ = −AWC2Z

= cos2 θAWZ = − cos2 θAZW. �

Using Lemma 3.11 and Remark 3.6, we obtain:

Corollary 3.12. Let (M, gM , J) be a Kähler manifold and (N, gN ) a Riemann-
ian manifold. Let F : (M, gM , J) 7→ (N, gN ) be a proper v-slant submersion
with the v-slant angle θ. Assume that the tensor B is parallel. Then we have

traceA = 0 on (kerF∗)
⊥.

Assume that the v-semi-slant angle θ is not equal to π
2 and define an endo-

morphism Ĵ of (kerF∗)
⊥ by

Ĵ := JP + sec θCQ.

Then,

Ĵ2 = −id on (kerF∗)
⊥.(3.3)

From (3.3), we have:

Theorem 3.13. Let F be a v-semi-slant submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ) with the v-semi-slant
angle θ ∈ [0, π2 ). Then N is an even-dimensional manifold.

Now we deal with the conditions for distributions to be totally geodesic
foliations.

Proposition 3.14. Let F be a v-semi-slant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution D1

defines a totally geodesic foliation if and only if

φAXJY +BH∇XJY = 0 and Q(ωAXJY + CH∇XJY ) = 0

for X,Y ∈ Γ(D1).

Proof. Given X,Y ∈ Γ(D1), we get

∇XY = −J∇XJY = −J(AXJY +H∇XJY )

= −(φAXJY + ωAXJY +BH∇XJY + CH∇XJY ).

Hence,

∇XY ∈ Γ(D1)

⇔ φAXJY +BH∇XJY = 0 and Q(ωAXJY + CH∇XJY ) = 0.
�

In a similar way, we obtain:
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Proposition 3.15. Let F be a v-semi-slant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then the distribution D2

defines a totally geodesic foliation if and only if

φ(V∇XBY +AXCY ) +B(AXBY +H∇XCY ) = 0,

P (ω(V∇XBY +AXCY ) + C(AXBY +H∇XCY )) = 0

for X,Y ∈ Γ(D2).

We also have the same results with the case of a semi-slant submersion [19].
We can prove them in the same way.

Theorem 3.16. Let F be a v-semi-slant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then M is locally a Rie-
mannian product manifold if and only if

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0 for X,Y ∈ Γ(kerF∗),

φ(V∇ZBW+AZCW )+B(AZBW+H∇ZCW ) = 0 for Z,W ∈ Γ((kerF∗)
⊥).

Theorem 3.17. Let F be a v-semi-slant submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). Then F is a totally geodesic
map if and only if

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0,

ω(∇̂XBZ + TXCZ) + C(TXBZ +H∇XCZ) = 0

for X,Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥).

Remark 3.18. Let F be a Riemannian submersion from a Kähler manifold
(M, gM , J) onto a Riemannian manifold (N, gN ). By the properties of Rie-
mannian submersion, the conditions for F to be totally geodesic are the same
among a v-semi-slant submersion, a v-semi-invariant submersion, and a v-slant
submersion.

Let F : (M, gM ) 7→ (N, gN ) be a Riemannian submersion. Then the map F
is called a Riemannian submersion with totally umbilical fibers if

TXY = gM (X,Y )H for X,Y ∈ Γ(kerF∗),(3.4)

where H is the mean curvature vector field of any fiber.
Then we obtain:

Lemma 3.19. Let F be a v-semi-slant submersion with totally umbilical fibers
from a Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then
we have

H ∈ Γ(D2).

Proof. Given X,Y ∈ Γ(µ) and W ∈ Γ(D1), we get

TXJY + ∇̂XJY = ∇XJY = J∇XY = BTXY + CTXY + φ∇̂XY + ω∇̂XY.
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Using (3.4), we easily obtain

gM (X,JY )gM (H,W ) = −gM (X,Y )gM (H,JW ).

Interchanging the role of X and Y , we get

gM (Y, JX)gM (H,W ) = −gM (Y,X)gM (H,JW )

so that combining the above two equations, we have

gM (X,Y )gM (H,JW ) = 0,

which means H ∈ Γ(D2). �

Corollary 3.20. Let F be a v-semi-slant submersion with totally umbilical
fibers from a Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN )
such that D1 = (kerF∗)

⊥. Then the fibers of F are minimal submanifolds of
M .

Remark 3.21. Let F be a v-semi-slant submersion with totally umbilical fibers
from a Kähler manifold (M, gM , J) onto a Riemannian manifold (N, gN ) such
that D1 = (kerF∗)

⊥. Then we get a family {F−1(y) | y ∈ N} of minimal
submanifolds of M .

4. Curvature tensors

Let F be a v-semi-slant submersion from a Kähler manifold (M, gM , J)
onto a Riemannian manifold (N, gN ). Then we can take a distribution D1 ⊂
(kerF∗)

⊥ such that

(kerF∗)
⊥ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for
nonzero X ∈ (D2)p and p ∈M , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥.

Moreover,

CD2 ⊂ D2, BD2 ⊂ kerF∗, kerF∗ = BD2 ⊕ µ,
where µ is the orthogonal complement of BD2 in kerF∗ and is J-invariant. For
the curvature tensor in a Kähler manifold, it is sufficient to deal with only the
holomorphic sectional curvatures.

Given a J-invariant plane P in TpM , p ∈ M , there is an orthonormal basis

{X, JX} of P . Denote by K(P ), K∗(P ), and K̂(P ) the sectional curvatures
of the plane P in M , N , and the fiber F−1(F (p)), respectively, where K∗(P )
denotes the sectional curvature of the plane P∗ = 〈F∗X,F∗JX〉 in N . Denote
by K(X ∧ Y ) the sectional curvature of the plane spanned by the tangent
vectors X,Y ∈ TpM , p ∈ M . Using both Corollary 1 of ([15], p. 465) and
(1.28) of ([6], p. 13), we obtain

(1) If P ⊂ (µ)p, then we have

K(P ) = K̂(P ) + ||TXX||2 − ||TXJX||2 − gM (TXX, J [JX,X]).
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(2) If P ⊂ (D2 ⊕BD2)p with X ∈ (D2)p, then we get

K(P ) = sin2 θ ·K(X ∧BX) + 2(gM ((∇XA)(X,CX), BX)

+ gM (AXCX, TBXX)− gM (ACXX, TBXX)

− gM (AXX, TBXCX)) + cos2 θ ·K(X ∧ CX).

(3) If P ⊂ (D1)p, then we obtain

(4.1) K(P ) = K∗(P )− 3||VJ∇XX||2.

Using (4.1), we have:

Theorem 4.1. Let F be a v-semi-slant submersion from a Kähler manifold
(M, gM , J) onto a space (N(c), gN ) of constant holomorphic sectional curvature
c with dimD1 > 0. Assume that the complex distribution D1 defines a totally
geodesic foliation. Then we get

K(P ) = c for any J-invariant plane P ⊂ D1.

Remark 4.2. By using Theorem 4.1, there does not exist a v-semi-slant submer-
sion F from a Kähler manifold (M, gM , J) onto a space (N(c), gN ) of constant
sectional curvature c such that the complex distribution D1 is a totally geodesic
foliation, dimD1 > 0, and K(P ) < c for some J-invariant plane P ⊂ D1.

We will introduce an inequality of a proper v-semi-slant submersion in terms
of squared mean curvature, scalar curvature, and v-semi-slant angle.

Let (Mn(c), g, J) be a space of constant holomorphic sectional curvature c
with dimMn(c) = 2n and n ≥ 2 [13]. Then its Riemannian curvature tensor
R is given by [13]

R(X,Y )Z =
c

4
{g(Z, Y )X − g(Z,X)Y + g(Z, JY )JX

− g(Z, JX)JY + 2g(X, JY )JZ}

for any vector fields X,Y, Z on Mn(c).
Let F be a proper v-semi-slant submersion from a space (Mn(c), g, J) of con-

stant holomorphic sectional curvature c onto a Riemannian manifold (N2n−2,
gN ) with dimN2n−2 = 2n− 2. Then since F is proper (i.e., θ ∈ (0, π2 )), we get

(kerF∗)
⊥ = D1 ⊕D2, kerF∗ = BD2, dim(kerF∗) = dimD2 = 2

so that by Remark 3.6, there is a local orthonormal frame

{X1, JX1, . . . , Xn−2, JXn−2, Y, sec θCY }

of (kerF∗)
⊥ such that {X1, JX1, . . . , Xn−2, JXn−2} ⊂ Γ(D1), {Y, sec θCY } ⊂

Γ(D2), and {csc θBY, csc θ sec θBCY } is a local orthonormal frame of kerF∗.
Denote by τ̂ and H the scalar curvature of any fiber and the mean curvature

vector field of any fiber, respectively, i.e.,

τ̂ = K̂(kerF∗) = csc4 θ sec2 θg(R̂(BY,BCY )BCY,BY )
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and

H =
1

2
csc2 θ(TBYBY + sec2 θTBCYBCY ),

where R̂ is the Riemannian curvature tensor of any fiber.
Denote also by ||H||2 the squared mean curvature, i.e., ||H||2 = g(H,H).

Theorem 4.3. Let F be a proper v-semi-slant submersion from a space
(Mn(c), g, J) of constant holomorphic sectional curvature c onto a Riemannian
manifold (N2n−2, gN ) with dimN2n−2 = 2n− 2 and n ≥ 2. Then we obtain

||H||2 ≥ 1

2
τ̂ − c

8
(1 + 3 cos2 θ)

with equality holding if and only if all the fibers are totally geodesic.

Proof. We will use the above notations.
Conveniently, let e1 := csc θBY and e2 := csc θ sec θBCY .
Then we have

||H||2 =
1

4
{g(Te1e1, Te1e1) + g(Te2e2, Te2e2) + 2g(Te1e1, Te2e2)}

and

τ̂ = g(R̂(e1, e2)e2, e1) =
c

4
(1 + 3g(e1, Je2)2) + g(Te1e1, Te2e2)− g(Te1e2, Te1e2).

Moreover, since BC + φB = 0 on (kerF∗)
⊥, using Remark 3.6, we get

g(e1, Je2)2 = csc4 θ · sec2 θg(JBY,BCY )2

= csc4 θ · sec2 θg(φBY,BCY )2

= csc4 θ · sec2 θg(BCY,BCY )2

= cos2 θ.

Using the above equations, we obtain

||H||2 =
1

2
τ̂ − c

8
(1 + 3 cos2 θ) +

1

4
||Te1e1||2 +

1

4
||Te2e2||2 +

1

2
||Te1e2||2.

Hence,

||H||2 ≥ 1

2
τ̂ − c

8
(1 + 3 cos2 θ)

with equality holding if and only if T = 0.
Therefore, the result follows. �

5. Examples

Example 5.1. Let (M, gM , J) be an almost Hermitian manifold. Let π :
TM 7→ M be the natural projection. Then the map π is a v-semi-slant sub-
mersion such that D1 = (kerπ∗)

⊥ [6].
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Example 5.2. Let (M, gM , J) be a 2m-dimensional almost Hermitian man-
ifold and (N, gN ) a (2m − 1)-dimensional Riemannian manifold. Let F be a
Riemannian submersion from an almost Hermitian manifold (M, gM , J) onto a
Riemannian manifold (N, gN ). Then the map F is a v-semi-slant submersion
such that

D1 = ((kerF∗)⊕ J(kerF∗))
⊥ and D2 = J(kerF∗)

with the v-semi-slant angle θ = π
2 .

Example 5.3. Define a map F : R6 7→ R4 by

F (x1, x2, . . . , x6) = (x1, x3 sinα− x5 cosα, x6, x2),

where α ∈ (0, π2 ). Then the map F is a v-semi-slant submersion such that

D1 = 〈 ∂
∂x1

,
∂

∂x2
〉 and D2 = 〈 ∂

∂x6
, sinα

∂

∂x3
− cosα

∂

∂x5
〉

with the v-semi-slant angle θ = α.
Furthermore, kerF∗ = 〈 ∂

∂x4
, cosα ∂

∂x3
+ sinα ∂

∂x5
〉 and the map F is a slant

submersion with the slant angle θ = α.

Example 5.4. Define a map F : R8 7→ R4 by

F (x1, x2, . . . , x8) = (x4, x3,
x5 − x8√

2
, x6).

Then the map F is a v-semi-slant submersion such that

D1 = 〈 ∂
∂x3

,
∂

∂x4
〉 and D2 = 〈 ∂

∂x6
,
∂

∂x5
− ∂

∂x8
〉

with the v-semi-slant angle θ = π
4 .

Example 5.5. Define a map F : R12 7→ R5 by

F (x1, x2, . . . , x12) = (x2,
x5 + x6√

2
,
x7 + x9√

2
,
x8 + x10√

2
, x1).

Then the map F is a v-semi-slant submersion such that

D1 = 〈 ∂
∂x1

,
∂

∂x2
,
∂

∂x7
+

∂

∂x9
,
∂

∂x8
+

∂

∂x10
〉 and D2 = 〈 ∂

∂x5
+

∂

∂x6
〉

with the v-semi-slant angle θ = π
2 .

Example 5.6. Define a map F : R10 7→ R6 by

F (x1, x2, . . . , x10) = (
x3 − x5√

2
, x6,

x7 + x9√
2

, x8, x1, x2).

Then the map F is a v-semi-slant submersion such that

D1 = 〈 ∂
∂x1

,
∂

∂x2
〉 and D2 = 〈 ∂

∂x6
,
∂

∂x8
,
∂

∂x3
− ∂

∂x5
,
∂

∂x7
+

∂

∂x9
〉

with the v-semi-slant angle θ = π
4 .
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Example 5.7. Define a map F : R8 7→ R4 by

F (x1, x2, . . . , x8) = (x1, x3 cosα− x5 sinα, x2, x4 sinβ + x6 cosβ),

where α and β are constants. Then the map F is a v-semi-slant submersion
such that

D1 = 〈 ∂
∂x1

,
∂

∂x2
〉 and D2 = 〈cosα

∂

∂x3
− sinα

∂

∂x5
, sinβ

∂

∂x4
+ cosβ

∂

∂x6
〉

with the v-semi-slant angle θ satisfying cos θ = | sin(α− β)|.

6. Open questions

We investigated some properties on a v-semi-slant submersion

F : (M, gM , J) 7→ (N, gN ).

In particular, we studied the integrabilities of distributions and the totally
geodesicness of distributions.

As future projects, we have:

Question.

(1) Let F : (M, gM , J) 7→ (N, gN ) be a v-semi-slant submersion with the
v-semi-slant angle θ.

Then
(a) Can we give a characterization of a semi-slant angle θ?
(b) What kind of rigidity problems can we do on the map F?
(c) Using the map F , what are the advantages for studying complex

geometry?
(2) In this paper, we only studied the properties of v-semi-slant submer-

sions F : (M, gM , J) 7→ (N, gN ).
So, as future works, we need to investigate the properties of v-semi-

invariant submersions, v-slant submersion, and v-anti-invariant sub-
mersions (i.e., D2 = (kerF∗)

⊥ and J((kerF∗)
⊥) ⊂ kerF∗) (See Defini-

tion 3 and Remark 3.1).
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