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ON THE V-SEMI-SLANT SUBMERSIONS FROM
ALMOST HERMITIAN MANIFOLDS

KWANG SOON PARK

ABSTRACT. In this paper, we deal with the notion of a v-semi-slant sub-
mersion from an almost Hermitian manifold onto a Riemannian mani-
fold. We investigate the integrability of distributions, the geometry of
foliations, and a decomposition theorem. Given such a map with totally
umbilical fibers, we have a condition for the fibers of the map to be min-
imal. We also obtain an inequality of a proper v-semi-slant submersion
in terms of squared mean curvature, scalar curvature, and a v-semi-slant
angle. Moreover, we give some examples of such maps and some open
problems.

1. Introduction

Let F' be a C*-submersion from a (semi-)Riemannian manifold (M, gar)
onto a (semi-)Riemannian manifold (N, gn). Then according to the conditions
on the map F : (M,gy) — (N,gn), we have the following submersions: a
semi-Riemannian submersion and a Lorentzian submersion [6], a Riemannian
submersion ([8,15]), an invariant submersion [24], an anti-invariant submer-
sion [20], a slant submersion ([5,22]), an almost Hermitian submersion [25],
a contact-complex submersion [9], a quaternionic submersion [10], an almost
h-slant submersion [16], a semi-invariant submersion [23], an almost h-semi-
invariant submersion [17], a semi-slant submersions [19], an almost h-semi-slant
submersions [18], etc. The theory of isometric immersions was begun with the
work of Gauss [7] on surfaces in the Euclidean space R® in 1827. On the
other hand, the study of Riemannian submersions was independently initiated
by B. O'Neill [15] in 1966 and A. Gray [8] in 1967 as the counterpart of the
theory of isometric immersions. Using the notion of almost Hermitian sub-
mersions, B. Watson [25] obtained a classification theorem among fibers, base
manifolds, and total manifolds in 1976. As we know, Riemannian submersions
are related with physics and have their applications in the Yang-Mills theory
([3,26]), Kaluza-Klein theory ([2,11]), Supergravity and superstring theories
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([12,14]), etc. And any C°°-maps between Riemannian manifolds are useful
and important in several areas ([21], references therein).

The paper is organized as follows. In Section 2 we remind some notions
which are needed at the following sections. In Section 3 we give the definition
of a v-semi-slant submersion and obtain some properties on it. In Section 4 we
deal with an inequality of a proper v-semi-slant submersion in terms of squared
mean curvature, scalar curvature, and a v-semi-slant angle. In Section 5 we
give some examples of a v-semi-slant submersion. In Section 6 we give some
open problems.

2. Preliminaries

Let (M, gnr) and (N, gn) be Riemannian manifolds, where M, N are C'*°-
manifolds and g, gy are Riemannian metrics on M, N, respectively. Let
F: M +— N be aC®map. We call the map F' a C*>°-submersion if F is
surjective and the differential (F}), of F' at any p € M has a maximal rank.
The map F is said to be a Riemannian submersion [6] if F'is a C'*°-submersion
and the differential F, preserves the lengths of horizontal vectors.

Let (M,gyp,J) be an almost Hermitian manifold, where J is an almost
complex structure. A Riemannian submersion F : (M, ga,J) — (N,gn) is
called a slant submersion [22] if the angle § = (X)) between JX and the space
ker(F}), is constant for any nonzero X € T,M and p € M.

We call the angle 0 a slant angle.

Let F': (M, g, J) — (N, gn) be a slant submersion with the slant angle 6.
If = 0, then we call the map F' an invariant submersion [24]. If § = 7, then
we call the map F' an anti-invariant submersion [20].

A Riemannian submersion F' : (M,gp,J) — (N,gn) is called a semi-
invariant submersion [23] if there is a distribution D; C ker F such that

ker F, = Dy @ Dy, J(D1) =Dy, J(Dy) C (ker F,)™*,

where Ds is the orthogonal complement of D; in ker F.
A Riemannian submersion F' : (M, gar,J) — (N, gn) is called a semi-slant
submersion [19] if there is a distribution D; C ker F such that

kerF* = D]_ @DQ, J(Dl) = Dl,

and the angle § = 6(X) between JX and the space (Ds), is constant for nonzero
X € (D3), and p € M, where D, is the orthogonal complement of D; in ker F.

We call the angle 6 a semi-slant angle.

As we know, a semi-slant submersion is a generalization of a slant submersion
and a semi-invariant submersion.

Let (M,gp) and (N, gn) be Riemannian manifolds and F : (M, gy ) —
(N, gn) a C°°-map. The second fundamental form of F is given by

(VE)(X,Y):=VEFRY — F,.(VxY) for X,Y e I(TM),
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where V¥ is the pullback connection and we denote conveniently by V the
Levi-Civita connections of the metrics gy and gy [1]. Recall that F is said
to be harmonic if trace(VF,) = 0 and F is called a totally geodesic map if
(VF,)(X,Y)=0for X,Y e I(TM) [1].

3. v-semi-slant submersions

Definition. Let (M, gy, J) be an almost Hermitian manifold and (N, gy) a
Riemannian manifold. A Riemannian submersion F' : (M, gar, J) — (N, gn) is
called a v-semi-slant submersion if there is a distribution D; C (ker F,)* such
that
(ker F,)* = Dy @ Ds, J(D1) = Dy,

and the angle § = 6(X) between JX and the space (D3), is constant for
nonzero X € (D3), and p € M, where D, is the orthogonal complement of D,
in (ker F,)= .

We call the angle 6 a v-semi-slant angle.

Remark 3.1. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, gas, J) onto a Riemannian manifold (N, gn). If 6 € (0, T), then
we call the map F' proper. And if 6§ = 7, then we call the map F' a v-semi-
invariant submersion [23]. On the other hand, if Dy = (ker F,)~*, then we call
the map F a v-slant submersion and the angle 0 a v-slant angle [22].

Let F: (M, g, J) — (N,gn) be a v-semi-slant submersion. Then there is
a distribution D; C (ker F,.)* such that

(ker F,)* = Dy, ® Dy, J(Dy) = Dy,

and the angle § = 6(X) between JX and the space (D2), is constant for
nonzero X € (D3), and p € M, where D, is the orthogonal complement of D,
in (ker F,)= .

Then for X € T'((ker F,)1), we write

X = PX + QX,

where PX € T'(D;) and QX € I'(Ds).
For X € I'(ker F.), we get

JX = X + wX,

where ¢pX € I'(ker F,) and wX € I'((ker F,)™).
For Z € T'((ker F,)"), we obtain

JZ =BZ+CZ,

where BZ € T'(ker F,) and CZ € I'((ker Fy)1).
For U € T'(T'M), we have

U=VU+HU,
where VU € I'(ker F,) and HU € I'((ker F,)%1).
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Then
(3.1) ker F, = BDs & p,

where p is the orthogonal complement of BD, in ker F, and is invariant by J.
Furthermore,

CDy =Dy, BD; =0, CDy C Dy, w(ker F,) = Ds,
¢* + Bw = —id, C* + wB = —id, wp + Cw =0, BC + ¢B = 0.
Define the (O’Neill) tensors 7 and A by

AgF = HVygVF +VVygHF,

TeF = HVygVF + VVypHF

for vector fields E, F on M, where V is the Levi-Civita connection of gy;.
Define

(3.2)

VxY :=VVxY for X,Y € '(ker F,).
We also define
(VzB)W :=VVzBW — BHV ;W,
(VzOYW := HV z2CW — CHNV ;W

for Z,W € I'((ker F,)1).
We call the tensors B and C parallel if VB = 0 and VC = 0, respectively.

Remark 3.2. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, gar,J) onto a Riemannian manifold (N, gy). Since ker F, =
BDy @ p and J(u) = p, each fiber F~1(y) is a generic submanifold of M for
y €N [4].

Then we easily have:

Lemma 3.3. Let (M, gy, J) be a Kahler manifold and (N, gn) a Riemannian
manifold. Let F : (M, g, J) — (N,gn) be a v-semi-slant submersion. Then
we get

(1)
VxoY + TxwY = ¢VxY + BTxY,
TxdY + HV xwY = wVxY + CTxY

for X, Y € T'(ker Fy).
(2)
VVzBW + AzCW = oAz W + BHV z W,
AzBW +HV zCW = wAzW + CHV ;W

for Z,W € T'((ker F,)1).
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VxBZ+TxCZ = ¢TxZ + BHV x Z,
TxBZ +HVxCZ =wTxZ +CHV xZ

for X € T'(ker F,) and Z € T'((ker F,)*).

Corollary 3.4. Let (M, gnr,J) be a Kahler manifold and (N, gn) a Riemann-
ian manifold. Let F : (M,gp,J) — (N,gn) be a v-semi-slant submersion.
Then we obtain

(VzB)W = ¢pAzW — AzCW,
(Vz2O\W =wAzW — AzBW
for Z,W € TI'((ker F,)1).
Proposition 3.5. Let F' be a v-semi-slant submersion from an almost Her-

mitian manifold (M, gy, J) onto a Riemannian manifold (N, gn) with the v-
semi-slant angle 0. Then we obtain

C?X = —cos?0X  for X € T'(Dy).

Proof. Since
gM(‘]X7 CX) _ 79M(X7 CZX)

cosf = =
X -lex|) - [1X]] - [leX]]
and cosf = %, we have
X,C%?X
cos? ) = —LC;) for X € T'(Dy).
111
Hence,
C?X = —cos?0X for X € T(Dy). O

Remark 3.6. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, g, J) onto a Riemannian manifold (N, gx) with the v-semi-slant
angle 6. Using Proposition 3.5, we easily get

gm (CX7 CY) = COSQ agM (X? Y)a

gu(BX,BY) = sin?0gp(X,Y)
for X,Y € I'(D2) so that given 6 € [0,7), there exists a local orthonormal

frame {X,sec0CXy,..., Xj,sec0C Xy} of Ds.

Theorem 3.7. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, g, J) onto a Riemannian manifold (N,gn). Then the slant
distribution Dy is integrable if and only if we obtain

Axy =0 and PC(V)(Y — VyX) =0
for X, Y € T'(Ds).
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Proof. Given X,Y € I'(D;) and Z € I'(D;), assuming that AxY = V[X,Y] =
0 [6], we obtain
g]w([X, Y], JZ) = 7gM(J(VXy — VyX), Z)
= —gM(BVXY + CVXY - BVYX - CVYX, Z)
= —gM(C(VXY — Vy)()7 Z)
Since the integrability of Dy implies that AxY =0 for X, Y € I'(D2), we have
the result. 0

Similarly, we get:

Theorem 3.8. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, gnr, J) onto a Riemannian manifold (N,gn). Then the complex
distribution Dy is integrable if and only if we have

AxY =0 and B(VxY —-VyX)=0
for XY € T'(Dy).
Lemma 3.9. Let (M, g, J) be a Kdhler manifold and (N, gn) a Riemannian

manifold. Let F : (M,gnr,J) — (N,gn) be a v-semi-slant submersion. Then
the complex distribution Dy is integrable if and only if we get

AxY =0 for XY € I'(Dy).

Proof. Given X,Y € I'(D;) and Z € I'(ker F}), assuming that AxY = 0, we
have

gu([X, Y], wZ) = gu([X, Y], JZ) = —gu (J(VxY — Vy X), Z)
= —gm(AxJY + HVxJY — Ay JX — HVyJX, Z)
= *gM(ijYfijX, Z).
Since w(ker Fy) = Dy, the result follows. O

In a similar way, we have:

Lemma 3.10. Let (M, g, J) be a Kiahler manifold and (N, gn) a Riemannian
manifold. Let F : (M, gy, J) — (N,gn) be a v-semi-slant submersion. Then
the slant distribution Do is integrable if and only if we obtain

AxY =0 and P((AxBY — AyBX)+H(VxCY —Vy(CX))=0
for X, Y € T(Ds).
Lemma 3.11. Let (M, gpr, J) be a Kahler manifold and (N, gn) a Riemannian
manifold. Let F: (M, gpy, J) — (N,gn) be a v-semi-slant submersion with the

v-semi-slant angle 0. Assume that the tensor B is parallel. Given Z € T'(Ds)
and W € T'((ker F,)1), we get

AczCW = —cos® 0 AL W.
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Proof. Since the tensor B is parallel, from Corollary 3.4, we have
AzCW = ¢ AzW  for Z,W € T'((ker F,)%).
So,
AczCW = ¢AczW = —pAwCZ = —AwC*Z
= cos2 0 Aw Z = — cos® 0 AL W. O

Using Lemma 3.11 and Remark 3.6, we obtain:

Corollary 3.12. Let (M, g, J) be a Kahler manifold and (N, gn) a Riemann-
ian manifold. Let F : (M,gn,J) — (N,gn) be a proper v-slant submersion
with the v-slant angle 0. Assume that the tensor B is parallel. Then we have

traceA =0 on (ker F,)*.

s

Assume that the v-semi-slant angle 6 is not equal to 5 and define an endo-
morphism J of (ker F,)* by
J := JP + sec 0CQ.
Then,
(3.3) J? = —id on (ker F,)*.
From (3.3), we have:

Theorem 3.13. Let F' be a v-semi-slant submersion from an almost Hermitian
manifold (M, gar, J) onto a Riemannian manifold (N, gn) with the v-semi-slant
angle § € [0, %). Then N is an even-dimensional manifold.

Now we deal with the conditions for distributions to be totally geodesic
foliations.

Proposition 3.14. Let F' be a v-semi-slant submersion from a Kdahler manifold
(M, g, J) onto a Riemannian manifold (N,gn). Then the distribution Dy
defines a totally geodesic foliation if and only if

dAxJY + BHV xJY =0 and QwAxJY + CHVxJY) =0
for XY € T'(Dy).
Proof. Given XY € T'(Dy), we get

VxY =—-JVxJY = —J(AxJY + HVxJY)

= —(pAxJY + wAxJY + BHV xJY + CHV xJY).
Hence,
VxY e I'(Dy)
< ¢pAxJY + BHVxJY =0 and QwAxJY + CHVxJY) =0.

In a similar way, we obtain:
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Proposition 3.15. Let F' be a v-semi-slant submersion from a Kdahler manifold
(M, gnr, J) onto a Riemannian manifold (N,gn). Then the distribution Doy
defines a totally geodesic foliation if and only if

(b(VVXBY + AXCY) + B(.AxBY + HVXOY) =0,
P(M(VVXBY + AXCY) + C(.AxBY JrHVXCY)) =0
for XY € T'(D»).

We also have the same results with the case of a semi-slant submersion [19].
We can prove them in the same way.

Theorem 3.16. Let F' be a v-semi-slant submersion from a Kdhler manifold
(M, gn, J) onto a Riemannian manifold (N,gn). Then M is locally a Rie-
manmnian product manifold if and only if

w(Vx @Y + TxwY) + C(Tx @Y + HVxwY) =0 for X,Y € ['(ker F,),
d(VV 2 BW +AzCW)+B(AzBW +HV ,CW) =0 for Z,W € I'((ker F,)*).
Theorem 3.17. Let F be a v-semi-slant submersion from a Kdahler manifold

(M, g, J) onto a Riemannian manifold (N, gy). Then F is a totally geodesic
map if and only if

w(VxdY + TxwY) + C(Tx oY + HVxwY) =0,
w(VxBZ + TxCZ) + C(TxBZ + HVxCZ) =0
for X, Y € T'(ker F,) and Z € T'((ker F,)71).

Remark 3.18. Let F' be a Riemannian submersion from a Kahler manifold
(M, g, J) onto a Riemannian manifold (N, gy). By the properties of Rie-
mannian submersion, the conditions for F' to be totally geodesic are the same
among a v-semi-slant submersion, a v-semi-invariant submersion, and a v-slant
submersion.

Let F': (M,gn) — (N, gn) be a Riemannian submersion. Then the map F
is called a Riemannian submersion with totally umbilical fibers if

(3.4) TxY =gu(X,Y)H for X,Y € I'(ker F}),

where H is the mean curvature vector field of any fiber.
Then we obtain:

Lemma 3.19. Let F be a v-semi-slant submersion with totally umbilical fibers
from a Kahler manifold (M, gar, J) onto a Riemannian manifold (N, gn). Then
we have

H eT(D,).
Proof. Given X,Y € I'(n) and W € I'(Dy), we get
TxJY +VxJY =VxJY = JVxY = BTxY + CTxY + ¢VxY +wVxY.
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Using (3.4), we easily obtain
gm (X, JY ) g (H, W) = —gn (X, Y )gne (H, JW).
Interchanging the role of X and Y, we get
gm (Y, JX)gu (H, W) = —gn (Y, X)gne (H, JW)
so that combining the above two equations, we have
gm (X, Y)gu (H, JW) =0,
which means H € T'(Dy). O

Corollary 3.20. Let F be a v-semi-slant submersion with totally umbilical
fibers from a Kdhler manifold (M, gnr, J) onto a Riemannian manifold (N, gn)
such that Dy = (ker F,)*. Then the fibers of F are minimal submanifolds of
M.

Remark 3.21. Let F be a v-semi-slant submersion with totally umbilical fibers
from a Kéhler manifold (M, gy, J) onto a Riemannian manifold (N, gn) such
that D; = (ker Fi)t. Then we get a family {F~!(y)|y € N} of minimal
submanifolds of M.

4. Curvature tensors

Let F be a v-semi-slant submersion from a Ké&hler manifold (M, g, J)
onto a Riemannian manifold (N, gn). Then we can take a distribution D; C
(ker F},)* such that

(ker F,)* = Dy, ® Dy, J(Dy) = Dy,

and the angle § = 6(X) between JX and the space (D2), is constant for
nonzero X € (D3), and p € M, where D, is the orthogonal complement of D,
in (ker F,)*.
Moreover,
CDy; C Dy, BDy CkerFy, kerF,= BDs® pu,

where g is the orthogonal complement of BDs in ker F, and is J-invariant. For
the curvature tensor in a Kahler manifold, it is sufficient to deal with only the
holomorphic sectional curvatures.

Given a J-invariant plane P in T,M, p € M, there is an orthonormal basis
{X,JX} of P. Denote by K(P), K,(P), and K(P) the sectional curvatures
of the plane P in M, N, and the fiber F~1(F(p)), respectively, where K, (P)
denotes the sectional curvature of the plane P, = (F, X, F,.JX) in N. Denote
by K(X AY) the sectional curvature of the plane spanned by the tangent
vectors X,Y € T,M, p € M. Using both Corollary 1 of ([15], p. 465) and
(1.28) of ([6], p- 13), we obtain

(1) If P C (u)p, then we have
K(P) = K(P)+ |[Tx X|]? = [Tx JX||> = gm(Tx X, J[J X, X]).
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(2) If P C (D3 ® BD3), with X € (Ds),,, then we get
K(P) = sin?0- K(X A BX) +2(gm(Vx A)(X,CX), BX)
+ 9 (AxCX, Tpx X) — gu(Acx X, Tpx X)
— g (Ax X, TpxCX)) +cos? 0 - K(X A CX).
(3) If P C (D1)p, then we obtain
(4.1) K(P) = K.(P) - 3||VJVx X]|.
Using (4.1), we have:
Theorem 4.1. Let F' be a v-semi-slant submersion from a Kdhler manifold
(M, g, J) onto a space (N(c), gn) of constant holomorphic sectional curvature

c with dim Dy > 0. Assume that the complex distribution Dy defines a totally
geodesic foliation. Then we get

K(P)=c for any J-invariant plane P C D;.

Remark 4.2. By using Theorem 4.1, there does not exist a v-semi-slant submer-
sion F from a Kéhler manifold (M, g, J) onto a space (N(c), gn) of constant
sectional curvature c such that the complex distribution D; is a totally geodesic
foliation, dim Dy > 0, and K (P) < ¢ for some J-invariant plane P C D;.

We will introduce an inequality of a proper v-semi-slant submersion in terms
of squared mean curvature, scalar curvature, and v-semi-slant angle.

Let (M™(c),g,J) be a space of constant holomorphic sectional curvature c
with dim M™(¢) = 2n and n > 2 [13]. Then its Riemannian curvature tensor
R is given by [13]

R(X,Y)Z = g{g(Z, VX — g(Z, X)Y + g(Z,JY)JX
— g(Z,JX)JY +29(X,JY)JZ}

for any vector fields X,Y, Z on M"(c).

Let F be a proper v-semi-slant submersion from a space (M"(c¢), g, J) of con-
stant holomorphic sectional curvature ¢ onto a Riemannian manifold (N27~2,
gn) with dim N?"~2 = 2n — 2. Then since F is proper (i.e., 6 € (0, %)), we get

(kelrF*)L =Dy ®D,, kerF,= BD,, dim(kerF,)=dimDy =2
so that by Remark 3.6, there is a local orthonormal frame
{Xl, JXl, RPN ,Xn_g, JXn_Q, K sec GCY}

of (ker F,)* such that {X;,JX1,..., X, _2,J X2} CT(D1), {Y,secCY} C
I'(Ds), and {cscBY, cscOsec§BCY } is a local orthonormal frame of ker F.

Denote by 7 and H the scalar curvature of any fiber and the mean curvature
vector field of any fiber, respectively, i.e.,

# = K(ker F,) = csc* @ sec? Og(R(BY, BCY)BCY, BY)
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and

1
H= 3 csc? 0(Tpy BY + sec? 0Tpcoy BCY),

where R is the Riemannian curvature tensor of any fiber.
Denote also by ||H||? the squared mean curvature, i.e., ||H||*> = g(H, H).

Theorem 4.3. Let F be a proper v-semi-slant submersion from a space
(M™(¢),g,J) of constant holomorphic sectional curvature ¢ onto a Riemannian
manifold (N*"=2 gn) with dim N?"~2 = 2n — 2 and n > 2. Then we obtain

|H|]? > =7 — §(1+300529)

DN | =

with equality holding if and only if all the fibers are totally geodesic.

Proof. We will use the above notations.
Conveniently, let e; := cscBY and e := cscfsec BCY .
Then we have

1
1H|[* = {g(Te 1, Tere1) + 9(Tese2, Tey2) + 20(Te, €1, Tey2)}
and

¢
4
Moreover, since BC' + ¢B = 0 on (ker F,)*, using Remark 3.6, we get

g(er, Jeo)? = csct 0 - sec? Og(JBY, BCY)?

= csc? 0 - sec? 0g(pBY, BCY')?

= csc’ 0 - sec? 0g(BCY, BCY)?

= cos? 6.

7= g(ﬁ(eh ea)ea,e1) = —(1+3g(er, Jea)?) + g(Te €1, Tere2) — g(Te, €2, Tey €2).

Using the above equations, we obtain

1. ¢ 1 1 1
I|H|]> = 57 g(l + 3cos® 0) + ZH7—8161||2 + Z||7—6262H2 + §H7-ele2||2~

Hence,
2 1. ¢ 2
[|H|| 2577§(1+3005 6)
with equality holding if and only if 7 = 0.
Therefore, the result follows. O

5. Examples

Example 5.1. Let (M, gy, J) be an almost Hermitian manifold. Let 7 :
TM — M be the natural projection. Then the map 7 is a v-semi-slant sub-
mersion such that D; = (ker m,)* [6].
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Example 5.2. Let (M, g, J) be a 2m-dimensional almost Hermitian man-
ifold and (N, gn) a (2m — 1)-dimensional Riemannian manifold. Let F be a
Riemannian submersion from an almost Hermitian manifold (M, gas, J) onto a
Riemannian manifold (N, gn). Then the map F' is a v-semi-slant submersion
such that

D) = ((ker F,) @ J(ker F,))* and D, = J(ker F,)
with the v-semi-slant angle 6 = 7.
Example 5.3. Define a map F : R® = R* by
F(x1,x9,...,26) = (z1,23sina — 5 cos o, g, T2),
where a € (0, ). Then the map F' is a v-semi-slant submersion such that

o 0
1=(5—=5—-)
8x1 8132
with the v-semi-slant angle § = «.
Furthermore, ker F, = <6%4, cos a% + sin a%} and the map F' is a slant
submersion with the slant angle 8 = a.

and Dy = (—,sina—— — cosa——)

Oxg O3 Oxs

Example 5.4. Define a map F : R® — R* by

Ty — T8

7\/5 ,X6).

Then the map F is a v-semi-slant submersion such that

I RO RN
Oxs’ Oy Oxe Oxs  Oxg

with the v-semi-slant angle 6 = 7.

F(xy,x2,...,28) = (24, x3,

D,

Example 5.5. Define a map F : R!2 — RS by

Flan, o 212) = ( I5+Tg T7+ Tg 338+3310x)

3 PRI - ; ; ’ sy 1)
1,72 12 2 NG NG NG
Then the map F is a v-semi-slant submersion such that
o 0 0 g 0 0 0 0

— Y —t+ —, — dDy=(—+ —
6331 ’ 8.1'27 81'7 81‘9’ 8$8 + 8x10> an 2 <8x5 + 6336

with the v-semi-slant angle 0 = 7.

Dy = (

Example 5.6. Define a map F Rlo — R6 by
T3 — Iy X7+ Zg )
f , L6y f , L8y T1,T2).

Then the map F' is a v-semi-slant submersion such that

0 0 0o 0 0 g 0 0
87931’87x2>andD2_<7 A A T

(9%‘6 ’ 8.138 ’ 8.133 833‘5 ’ 6337 67.239>
with the v-semi-slant angle 0 = 7.

F(z1,22,...,210) = (

Dy =
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Example 5.7. Define a map F : R® = R* by
F(xq1,29,...,28) = (1,23 c08 0 — x5 sin , T2, x4 8in B + x6 cos ),

where o and ( are constants. Then the map F' is a v-semi-slant submersion
such that

0 0 ) o . 0 0
EER a—@) and Dy = <cosoza—173 — smoza—%,smﬂa—x4 —l—cosﬁa—%)

with the v-semi-slant angle 6 satisfying cosf = |sin(a — 5)|.

D1 = (

6. Open questions

We investigated some properties on a v-semi-slant submersion
F: (Mang‘]) = (N,gN)

In particular, we studied the integrabilities of distributions and the totally
geodesicness of distributions.
As future projects, we have:

Question.

(1) Let F': (M,gpm,J) — (N,gn) be a v-semi-slant submersion with the
v-semi-slant angle 6.
Then
(a) Can we give a characterization of a semi-slant angle 67
(b) What kind of rigidity problems can we do on the map F?
(¢) Using the map F, what are the advantages for studying complex
geometry?
(2) In this paper, we only studied the properties of v-semi-slant submer-
sions F' : (M, gy, J) — (N, gn).

So, as future works, we need to investigate the properties of v-semi-
invariant submersions, v-slant submersion, and v-anti-invariant sub-
mersions (i.e., Dy = (ker F,)* and J((ker F})1) C ker F) (See Defini-
tion 3 and Remark 3.1).
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