ON THE V-SEMI-SLANT SUBMERSIONS FROM ALMOST HERMITIAN MANIFOLDS

Kwang Soon Park

Abstract

In this paper, we deal with the notion of a v-semi-slant submersion from an almost Hermitian manifold onto a Riemannian manifold. We investigate the integrability of distributions, the geometry of foliations, and a decomposition theorem. Given such a map with totally umbilical fibers, we have a condition for the fibers of the map to be minimal. We also obtain an inequality of a proper v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and a v-semi-slant angle. Moreover, we give some examples of such maps and some open problems.

1. Introduction

Let F be a C^{∞}-submersion from a (semi-)Riemannian manifold (M, g_{M}) onto a (semi-)Riemannian manifold (N, g_{N}). Then according to the conditions on the map $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$, we have the following submersions: a semi-Riemannian submersion and a Lorentzian submersion [6], a Riemannian submersion $([8,15])$, an invariant submersion [24], an anti-invariant submersion [20], a slant submersion ([5,22]), an almost Hermitian submersion [25], a contact-complex submersion [9], a quaternionic submersion [10], an almost h-slant submersion [16], a semi-invariant submersion [23], an almost h-semiinvariant submersion [17], a semi-slant submersions [19], an almost h-semi-slant submersions [18], etc. The theory of isometric immersions was begun with the work of Gauss [7] on surfaces in the Euclidean space \mathbb{R}^{3} in 1827 . On the other hand, the study of Riemannian submersions was independently initiated by B. O'Neill [15] in 1966 and A. Gray [8] in 1967 as the counterpart of the theory of isometric immersions. Using the notion of almost Hermitian submersions, B. Watson [25] obtained a classification theorem among fibers, base manifolds, and total manifolds in 1976. As we know, Riemannian submersions are related with physics and have their applications in the Yang-Mills theory $([3,26])$, Kaluza-Klein theory ($[2,11]$), Supergravity and superstring theories
$([12,14])$, etc. And any C^{∞}-maps between Riemannian manifolds are useful and important in several areas ([21], references therein).

The paper is organized as follows. In Section 2 we remind some notions which are needed at the following sections. In Section 3 we give the definition of a v-semi-slant submersion and obtain some properties on it. In Section 4 we deal with an inequality of a proper v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and a v-semi-slant angle. In Section 5 we give some examples of a v-semi-slant submersion. In Section 6 we give some open problems.

2. Preliminaries

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds, where M, N are $C^{\infty}{ }_{-}$ manifolds and g_{M}, g_{N} are Riemannian metrics on M, N, respectively. Let $F: M \mapsto N$ be a C^{∞}-map. We call the map F a C^{∞}-submersion if F is surjective and the differential $\left(F_{*}\right)_{p}$ of F at any $p \in M$ has a maximal rank. The map F is said to be a Riemannian submersion [6] if F is a C^{∞}-submersion and the differential F_{*} preserves the lengths of horizontal vectors.

Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold, where J is an almost complex structure. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a slant submersion [22] if the angle $\theta=\theta(X)$ between $J X$ and the space $\operatorname{ker}\left(F_{*}\right)_{p}$ is constant for any nonzero $X \in T_{p} M$ and $p \in M$.

We call the angle θ a slant angle.
Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a slant submersion with the slant angle θ. If $\theta=0$, then we call the map F an invariant submersion [24]. If $\theta=\frac{\pi}{2}$, then we call the map F an anti-invariant submersion [20].

A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semiinvariant submersion [23] if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, J\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.
A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-slant submersion [19] if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.

We call the angle θ a semi-slant angle.
As we know, a semi-slant submersion is a generalization of a slant submersion and a semi-invariant submersion.

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and $F:\left(M, g_{M}\right) \mapsto$ $\left(N, g_{N}\right)$ a C^{∞}-map. The second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$

where ∇^{F} is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the metrics g_{M} and g_{N} [1]. Recall that F is said to be harmonic if $\operatorname{trace}\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma(T M)[1]$.

3. v-semi-slant submersions

Definition. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold and (N, g_{N}) a Riemannian manifold. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a v-semi-slant submersion if there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

We call the angle θ a v-semi-slant angle.
Remark 3.1. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. If $\theta \in\left(0, \frac{\pi}{2}\right)$, then we call the map F proper. And if $\theta=\frac{\pi}{2}$, then we call the map F a v-semiinvariant submersion [23]. On the other hand, if $\mathcal{D}_{2}=\left(\operatorname{ker} F_{*}\right)^{\perp}$, then we call the map F a v-slant submersion and the angle θ a v-slant angle [22].

Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Then for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we write

$$
X=P X+Q X
$$

where $P X \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Q X \in \Gamma\left(\mathcal{D}_{2}\right)$.
For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
J X=\phi X+\omega X
$$

where $\phi X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\omega X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
J Z=B Z+C Z,
$$

where $B Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $U \in \Gamma(T M)$, we have

$$
U=\mathcal{V} U+\mathcal{H} U
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Then

$$
\begin{equation*}
\operatorname{ker} F_{*}=B \mathcal{D}_{2} \oplus \mu, \tag{3.1}
\end{equation*}
$$

where μ is the orthogonal complement of $B \mathcal{D}_{2}$ in $\operatorname{ker} F_{*}$ and is invariant by J. Furthermore,

$$
\begin{align*}
& C \mathcal{D}_{1}=\mathcal{D}_{1}, B \mathcal{D}_{1}=0, C \mathcal{D}_{2} \subset \mathcal{D}_{2}, \omega\left(\operatorname{ker} F_{*}\right)=\mathcal{D}_{2} \\
& \phi^{2}+B \omega=-i d, C^{2}+\omega B=-i d, \omega \phi+C \omega=0, B C+\phi B=0 \tag{3.2}
\end{align*}
$$

Define the (O^{\prime} Neill) tensors \mathcal{T} and \mathcal{A} by

$$
\begin{aligned}
\mathcal{A}_{E} F & =\mathcal{H} \nabla_{\mathcal{H E}} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H}} \mathcal{H} F \\
\mathcal{T}_{E} F & =\mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V} E} \mathcal{H} F
\end{aligned}
$$

for vector fields E, F on M, where ∇ is the Levi-Civita connection of g_{M}.
Define

$$
\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right) .
$$

We also define

$$
\begin{aligned}
& \left(\nabla_{Z} B\right) W:=\mathcal{V} \nabla_{Z} B W-B \mathcal{H} \nabla_{Z} W, \\
& \left(\nabla_{Z} C\right) W:=\mathcal{H} \nabla_{Z} C W-C \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
We call the tensors B and C parallel if $\nabla B=0$ and $\nabla C=0$, respectively.
Remark 3.2. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Since $\operatorname{ker} F_{*}=$ $B \mathcal{D}_{2} \oplus \mu$ and $J(\mu)=\mu$, each fiber $F^{-1}(y)$ is a generic submanifold of M for $y \in N$ [4].

Then we easily have:
Lemma 3.3. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and (N, g_{N}) a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then we get
(1)

$$
\begin{aligned}
& \widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y=\phi \widehat{\nabla}_{X} Y+B \mathcal{T}_{X} Y \\
& \mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y=\omega \widehat{\nabla}_{X} Y+C \mathcal{T}_{X} Y
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(2)

$$
\begin{aligned}
& \mathcal{V} \nabla_{Z} B W+\mathcal{A}_{Z} C W=\phi \mathcal{A}_{Z} W+B \mathcal{H} \nabla_{Z} W \\
& \mathcal{A}_{Z} B W+\mathcal{H} \nabla_{Z} C W=\omega \mathcal{A}_{Z} W+C \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(3)

$$
\begin{gathered}
\hat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z=\phi \mathcal{T}_{X} Z+B \mathcal{H} \nabla_{X} Z, \\
\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z=\omega \mathcal{T}_{X} Z+C \mathcal{H} \nabla_{X} Z \\
\text { for } X \in \Gamma\left(\operatorname{ker} F_{*}\right) \text { and } Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)
\end{gathered}
$$

Corollary 3.4. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and (N, g_{N}) a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then we obtain

$$
\begin{aligned}
& \left(\nabla_{Z} B\right) W=\phi \mathcal{A}_{Z} W-\mathcal{A}_{Z} C W \\
& \left(\nabla_{Z} C\right) W=\omega \mathcal{A}_{Z} W-\mathcal{A}_{Z} B W
\end{aligned}
$$

for $Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proposition 3.5. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with the v -semi-slant angle θ. Then we obtain

$$
C^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right) .
$$

Proof. Since

$$
\cos \theta=\frac{g_{M}(J X, C X)}{\|J X\| \cdot\|C X\|}=\frac{-g_{M}\left(X, C^{2} X\right)}{\|X\| \cdot\|C X\|}
$$

and $\cos \theta=\frac{\|C X\|}{\|J X\|}$, we have

$$
\cos ^{2} \theta=-\frac{g_{M}\left(X, C^{2} X\right)}{\|X\|^{2}} \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Hence,

$$
C^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Remark 3.6. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with the v-semi-slant angle θ. Using Proposition 3.5, we easily get

$$
\begin{aligned}
& g_{M}(C X, C Y)=\cos ^{2} \theta g_{M}(X, Y) \\
& g_{M}(B X, B Y)=\sin ^{2} \theta g_{M}(X, Y)
\end{aligned}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$ so that given $\theta \in\left[0, \frac{\pi}{2}\right)$, there exists a local orthonormal frame $\left\{X_{1}, \sec \theta C X_{1}, \ldots, X_{k}, \sec \theta C X_{k}\right\}$ of \mathcal{D}_{2}.

Theorem 3.7. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad P C\left(\nabla_{X} Y-\nabla_{Y} X\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$ and $Z \in \Gamma\left(\mathcal{D}_{1}\right)$, assuming that $\mathcal{A}_{X} Y=\frac{1}{2} \mathcal{V}[X, Y]=$ 0 [6], we obtain

$$
\begin{aligned}
g_{M}([X, Y], J Z) & =-g_{M}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
& =-g_{M}\left(B \nabla_{X} Y+C \nabla_{X} Y-B \nabla_{Y} X-C \nabla_{Y} X, Z\right) \\
& =-g_{M}\left(C\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right)
\end{aligned}
$$

Since the integrability of \mathcal{D}_{2} implies that $\mathcal{A}_{X} Y=0$ for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$, we have the result.

Similarly, we get:
Theorem 3.8. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we have

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad B\left(\nabla_{X} Y-\nabla_{Y} X\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Lemma 3.9. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we get

$$
\mathcal{A}_{X} Y=0 \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{1}\right)
$$

Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$, assuming that $\mathcal{A}_{X} Y=0$, we have

$$
\begin{aligned}
g_{M}([X, Y], \omega Z) & =g_{M}([X, Y], J Z)=-g_{M}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
& =-g_{M}\left(\mathcal{A}_{X} J Y+\mathcal{H} \nabla_{X} J Y-\mathcal{A}_{Y} J X-\mathcal{H} \nabla_{Y} J X, Z\right) \\
& =-g_{M}\left(\mathcal{A}_{X} J Y-\mathcal{A}_{Y} J X, Z\right)
\end{aligned}
$$

Since $\omega\left(\operatorname{ker} F_{*}\right)=\mathcal{D}_{2}$, the result follows.
In a similar way, we have:
Lemma 3.10. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad P\left(\left(\mathcal{A}_{X} B Y-\mathcal{A}_{Y} B X\right)+\mathcal{H}\left(\nabla_{X} C Y-\nabla_{Y} C X\right)\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
Lemma 3.11. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion with the v-semi-slant angle θ. Assume that the tensor B is parallel. Given $Z \in \Gamma\left(\mathcal{D}_{2}\right)$ and $W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\mathcal{A}_{C Z} C W=-\cos ^{2} \theta \mathcal{A}_{Z} W
$$

Proof. Since the tensor B is parallel, from Corollary 3.4, we have

$$
\mathcal{A}_{Z} C W=\phi \mathcal{A}_{Z} W \quad \text { for } Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)
$$

So,

$$
\begin{aligned}
\mathcal{A}_{C Z} C W & =\phi \mathcal{A}_{C Z} W=-\phi \mathcal{A}_{W} C Z=-\mathcal{A}_{W} C^{2} Z \\
& =\cos ^{2} \theta \mathcal{A}_{W} Z=-\cos ^{2} \theta \mathcal{A}_{Z} W
\end{aligned}
$$

Using Lemma 3.11 and Remark 3.6, we obtain:
Corollary 3.12. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a proper v-slant submersion with the v-slant angle θ. Assume that the tensor B is parallel. Then we have

$$
\text { trace } \mathcal{A}=0 \quad \text { on }\left(\operatorname{ker} F_{*}\right)^{\perp} .
$$

Assume that the v-semi-slant angle θ is not equal to $\frac{\pi}{2}$ and define an endomorphism \widehat{J} of $\left(\operatorname{ker} F_{*}\right)^{\perp}$ by

$$
\widehat{J}:=J P+\sec \theta C Q
$$

Then,

$$
\begin{equation*}
\widehat{J}^{2}=-i d \quad \text { on }\left(\operatorname{ker} F_{*}\right)^{\perp} . \tag{3.3}
\end{equation*}
$$

From (3.3), we have:
Theorem 3.13. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with the v-semi-slant angle $\theta \in\left[0, \frac{\pi}{2}\right)$. Then N is an even-dimensional manifold.

Now we deal with the conditions for distributions to be totally geodesic foliations.

Proposition 3.14. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{1} defines a totally geodesic foliation if and only if

$$
\phi \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y=0 \text { and } Q\left(\omega \mathcal{A}_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Proof. Given $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$, we get

$$
\begin{aligned}
\nabla_{X} Y & =-J \nabla_{X} J Y=-J\left(\mathcal{A}_{X} J Y+\mathcal{H} \nabla_{X} J Y\right) \\
& =-\left(\phi \mathcal{A}_{X} J Y+\omega \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \nabla_{X} Y \in \Gamma\left(\mathcal{D}_{1}\right) \\
\Leftrightarrow & \phi \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y=0 \text { and } Q\left(\omega \mathcal{A}_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right)=0 .
\end{aligned}
$$

In a similar way, we obtain:

Proposition 3.15. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{2} defines a totally geodesic foliation if and only if

$$
\begin{aligned}
& \phi\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+B\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)=0 \\
& P\left(\omega\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+C\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
We also have the same results with the case of a semi-slant submersion [19]. We can prove them in the same way.

Theorem 3.16. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then M is locally a Riemannian product manifold if and only if

$$
\begin{aligned}
\omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right) & =0 \\
\phi\left(\mathcal{V} \nabla_{Z} B W+\mathcal{A}_{Z} C W\right)+B\left(\mathcal{A}_{Z} B W+\mathcal{H} \nabla_{Z} C W\right) & =0
\end{aligned} \quad \text { for } Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) . ~ . ~ . ~\left(\operatorname{ker} F_{*}\right), ~ .
$$

Theorem 3.17. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then F is a totally geodesic map if and only if

$$
\begin{aligned}
& \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0 \\
& \omega\left(\widehat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z\right)+C\left(\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Remark 3.18. Let F be a Riemannian submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. By the properties of Riemannian submersion, the conditions for F to be totally geodesic are the same among a v-semi-slant submersion, a v-semi-invariant submersion, and a v-slant submersion.

Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a Riemannian submersion. Then the map F is called a Riemannian submersion with totally umbilical fibers if

$$
\begin{equation*}
\mathcal{T}_{X} Y=g_{M}(X, Y) H \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{3.4}
\end{equation*}
$$

where H is the mean curvature vector field of any fiber.
Then we obtain:
Lemma 3.19. Let F be a v-semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we have

$$
H \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Proof. Given $X, Y \in \Gamma(\mu)$ and $W \in \Gamma\left(\mathcal{D}_{1}\right)$, we get

$$
\mathcal{T}_{X} J Y+\widehat{\nabla}_{X} J Y=\nabla_{X} J Y=J \nabla_{X} Y=B \mathcal{T}_{X} Y+C \mathcal{T}_{X} Y+\phi \widehat{\nabla}_{X} Y+\omega \widehat{\nabla}_{X} Y
$$

Using (3.4), we easily obtain

$$
g_{M}(X, J Y) g_{M}(H, W)=-g_{M}(X, Y) g_{M}(H, J W) .
$$

Interchanging the role of X and Y, we get

$$
g_{M}(Y, J X) g_{M}(H, W)=-g_{M}(Y, X) g_{M}(H, J W)
$$

so that combining the above two equations, we have

$$
g_{M}(X, Y) g_{M}(H, J W)=0
$$

which means $H \in \Gamma\left(\mathcal{D}_{2}\right)$.
Corollary 3.20. Let F be a v-semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold (N, g_{N}) such that $\mathcal{D}_{1}=\left(\operatorname{ker} F_{*}\right)^{\perp}$. Then the fibers of F are minimal submanifolds of M.

Remark 3.21. Let F be a v-semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold (N, g_{N}) such that $\mathcal{D}_{1}=\left(\operatorname{ker} F_{*}\right)^{\perp}$. Then we get a family $\left\{F^{-1}(y) \mid y \in N\right\}$ of minimal submanifolds of M.

4. Curvature tensors

Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we can take a distribution $\mathcal{D}_{1} \subset$ $\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Moreover,

$$
C \mathcal{D}_{2} \subset \mathcal{D}_{2}, \quad B \mathcal{D}_{2} \subset \operatorname{ker} F_{*}, \quad \operatorname{ker} F_{*}=B \mathcal{D}_{2} \oplus \mu,
$$

where μ is the orthogonal complement of $B \mathcal{D}_{2}$ in $\operatorname{ker} F_{*}$ and is J-invariant. For the curvature tensor in a Kähler manifold, it is sufficient to deal with only the holomorphic sectional curvatures.

Given a J-invariant plane P in $T_{p} M, p \in M$, there is an orthonormal basis $\{X, J X\}$ of P. Denote by $K(P), K_{*}(P)$, and $\widehat{K}(P)$ the sectional curvatures of the plane P in M, N, and the fiber $F^{-1}(F(p))$, respectively, where $K_{*}(P)$ denotes the sectional curvature of the plane $P_{*}=\left\langle F_{*} X, F_{*} J X\right\rangle$ in N. Denote by $K(X \wedge Y)$ the sectional curvature of the plane spanned by the tangent vectors $X, Y \in T_{p} M, p \in M$. Using both Corollary 1 of ([15], p. 465) and (1.28) of ([6], p. 13), we obtain
(1) If $P \subset(\mu)_{p}$, then we have

$$
K(P)=\widehat{K}(P)+\left\|\mathcal{T}_{X} X\right\|^{2}-\left\|\mathcal{T}_{X} J X\right\|^{2}-g_{M}\left(\mathcal{T}_{X} X, J[J X, X]\right)
$$

(2) If $P \subset\left(\mathcal{D}_{2} \oplus B \mathcal{D}_{2}\right)_{p}$ with $X \in\left(\mathcal{D}_{2}\right)_{p}$, then we get

$$
\begin{aligned}
K(P)= & \sin ^{2} \theta \cdot K(X \wedge B X)+2\left(g_{M}\left(\left(\nabla_{X} \mathcal{A}\right)(X, C X), B X\right)\right. \\
& +g_{M}\left(\mathcal{A}_{X} C X, \mathcal{T}_{B X} X\right)-g_{M}\left(\mathcal{A}_{C X} X, \mathcal{T}_{B X} X\right) \\
& \left.-g_{M}\left(\mathcal{A}_{X} X, \mathcal{T}_{B X} C X\right)\right)+\cos ^{2} \theta \cdot K(X \wedge C X)
\end{aligned}
$$

(3) If $P \subset\left(\mathcal{D}_{1}\right)_{p}$, then we obtain

$$
\begin{equation*}
K(P)=K_{*}(P)-3\left\|\mathcal{V} J \nabla_{X} X\right\|^{2} . \tag{4.1}
\end{equation*}
$$

Using (4.1), we have:
Theorem 4.1. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a space $\left(N(c), g_{N}\right)$ of constant holomorphic sectional curvature c with $\operatorname{dim} \mathcal{D}_{1}>0$. Assume that the complex distribution \mathcal{D}_{1} defines a totally geodesic foliation. Then we get

$$
K(P)=c \quad \text { for any } J \text {-invariant plane } P \subset \mathcal{D}_{1} .
$$

Remark 4.2. By using Theorem 4.1, there does not exist a v-semi-slant submersion F from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a space $\left(N(c), g_{N}\right)$ of constant sectional curvature c such that the complex distribution \mathcal{D}_{1} is a totally geodesic foliation, $\operatorname{dim} \mathcal{D}_{1}>0$, and $K(P)<c$ for some J-invariant plane $P \subset \mathcal{D}_{1}$.

We will introduce an inequality of a proper v-semi-slant submersion in terms of squared mean curvature, scalar curvature, and v-semi-slant angle.

Let $\left(M^{n}(c), g, J\right)$ be a space of constant holomorphic sectional curvature c with $\operatorname{dim} M^{n}(c)=2 n$ and $n \geq 2$ [13]. Then its Riemannian curvature tensor R is given by [13]

$$
\begin{aligned}
& R(X, Y) Z=\frac{c}{4}\{g(Z, Y) X-g(Z, X) Y+g(Z, J Y) J X \\
&-g(Z, J X) J Y+2 g(X, J Y) J Z\}
\end{aligned}
$$

for any vector fields X, Y, Z on $M^{n}(c)$.
Let F be a proper v-semi-slant submersion from a space $\left(M^{n}(c), g, J\right)$ of constant holomorphic sectional curvature c onto a Riemannian manifold ($N^{2 n-2}$, g_{N}) with $\operatorname{dim} N^{2 n-2}=2 n-2$. Then since F is proper (i.e., $\left.\theta \in\left(0, \frac{\pi}{2}\right)\right)$, we get

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad \operatorname{ker} F_{*}=B \mathcal{D}_{2}, \quad \operatorname{dim}\left(\operatorname{ker} F_{*}\right)=\operatorname{dim} \mathcal{D}_{2}=2
$$

so that by Remark 3.6, there is a local orthonormal frame

$$
\left\{X_{1}, J X_{1}, \ldots, X_{n-2}, J X_{n-2}, Y, \sec \theta C Y\right\}
$$

of $\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that $\left\{X_{1}, J X_{1}, \ldots, X_{n-2}, J X_{n-2}\right\} \subset \Gamma\left(\mathcal{D}_{1}\right),\{Y, \sec \theta C Y\} \subset$ $\Gamma\left(\mathcal{D}_{2}\right)$, and $\{\csc \theta B Y, \csc \theta \sec \theta B C Y\}$ is a local orthonormal frame of $\operatorname{ker} F_{*}$.

Denote by $\hat{\tau}$ and H the scalar curvature of any fiber and the mean curvature vector field of any fiber, respectively, i.e.,

$$
\hat{\tau}=\widehat{K}\left(\operatorname{ker} F_{*}\right)=\csc ^{4} \theta \sec ^{2} \theta g(\widehat{R}(B Y, B C Y) B C Y, B Y)
$$

and

$$
H=\frac{1}{2} \csc ^{2} \theta\left(\mathcal{T}_{B Y} B Y+\sec ^{2} \theta \mathcal{T}_{B C Y} B C Y\right)
$$

where \widehat{R} is the Riemannian curvature tensor of any fiber.
Denote also by $\|H\|^{2}$ the squared mean curvature, i.e., $\|H\|^{2}=g(H, H)$.
Theorem 4.3. Let F be a proper v-semi-slant submersion from a space $\left(M^{n}(c), g, J\right)$ of constant holomorphic sectional curvature c onto a Riemannian manifold $\left(N^{2 n-2}, g_{N}\right)$ with $\operatorname{dim} N^{2 n-2}=2 n-2$ and $n \geq 2$. Then we obtain

$$
\|H\|^{2} \geq \frac{1}{2} \hat{\tau}-\frac{c}{8}\left(1+3 \cos ^{2} \theta\right)
$$

with equality holding if and only if all the fibers are totally geodesic.
Proof. We will use the above notations.
Conveniently, let $e_{1}:=\csc \theta B Y$ and $e_{2}:=\csc \theta \sec \theta B C Y$.
Then we have

$$
\|H\|^{2}=\frac{1}{4}\left\{g\left(\mathcal{T}_{e_{1}} e_{1}, \mathcal{T}_{e_{1}} e_{1}\right)+g\left(\mathcal{T}_{e_{2}} e_{2}, \mathcal{T}_{e_{2}} e_{2}\right)+2 g\left(\mathcal{T}_{e_{1}} e_{1}, \mathcal{T}_{e_{2}} e_{2}\right)\right\}
$$

and
$\hat{\tau}=g\left(\widehat{R}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)=\frac{c}{4}\left(1+3 g\left(e_{1}, J e_{2}\right)^{2}\right)+g\left(\mathcal{T}_{e_{1}} e_{1}, \mathcal{T}_{e_{2}} e_{2}\right)-g\left(\mathcal{T}_{e_{1}} e_{2}, \mathcal{T}_{e_{1}} e_{2}\right)$.
Moreover, since $B C+\phi B=0$ on $\left(\operatorname{ker} F_{*}\right)^{\perp}$, using Remark 3.6, we get

$$
\begin{aligned}
g\left(e_{1}, J e_{2}\right)^{2} & =\csc ^{4} \theta \cdot \sec ^{2} \theta g(J B Y, B C Y)^{2} \\
& =\csc ^{4} \theta \cdot \sec ^{2} \theta g(\phi B Y, B C Y)^{2} \\
& =\csc ^{4} \theta \cdot \sec ^{2} \theta g(B C Y, B C Y)^{2} \\
& =\cos ^{2} \theta .
\end{aligned}
$$

Using the above equations, we obtain

$$
\|H\|^{2}=\frac{1}{2} \hat{\tau}-\frac{c}{8}\left(1+3 \cos ^{2} \theta\right)+\frac{1}{4}\left\|\mathcal{T}_{e_{1}} e_{1}\right\|^{2}+\frac{1}{4}\left\|\mathcal{T}_{e_{2}} e_{2}\right\|^{2}+\frac{1}{2}\left\|\mathcal{T}_{e_{1}} e_{2}\right\|^{2} .
$$

Hence,

$$
\|H\|^{2} \geq \frac{1}{2} \hat{\tau}-\frac{c}{8}\left(1+3 \cos ^{2} \theta\right)
$$

with equality holding if and only if $\mathcal{T}=0$.
Therefore, the result follows.

5. Examples

Example 5.1. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold. Let π : $T M \mapsto M$ be the natural projection. Then the map π is a v-semi-slant submersion such that $\mathcal{D}_{1}=\left(\operatorname{ker} \pi_{*}\right)^{\perp}[6]$.

Example 5.2. Let $\left(M, g_{M}, J\right)$ be a $2 m$-dimensional almost Hermitian manifold and $\left(N, g_{N}\right)$ a $(2 m-1)$-dimensional Riemannian manifold. Let F be a Riemannian submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left(\left(\operatorname{ker} F_{*}\right) \oplus J\left(\operatorname{ker} F_{*}\right)\right)^{\perp} \quad \text { and } \quad \mathcal{D}_{2}=J\left(\operatorname{ker} F_{*}\right)
$$

with the v-semi-slant angle $\theta=\frac{\pi}{2}$.
Example 5.3. Define a map $F: \mathbb{R}^{6} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{6}\right)=\left(x_{1}, x_{3} \sin \alpha-x_{5} \cos \alpha, x_{6}, x_{2}\right)
$$

where $\alpha \in\left(0, \frac{\pi}{2}\right)$. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{6}}, \sin \alpha \frac{\partial}{\partial x_{3}}-\cos \alpha \frac{\partial}{\partial x_{5}}\right\rangle
$$

with the v -semi-slant angle $\theta=\alpha$.
Furthermore, $\operatorname{ker} F_{*}=\left\langle\frac{\partial}{\partial x_{4}}, \cos \alpha \frac{\partial}{\partial x_{3}}+\sin \alpha \frac{\partial}{\partial x_{5}}\right\rangle$ and the map F is a slant submersion with the slant angle $\theta=\alpha$.

Example 5.4. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{8}\right)=\left(x_{4}, x_{3}, \frac{x_{5}-x_{8}}{\sqrt{2}}, x_{6}\right) .
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{5}}-\frac{\partial}{\partial x_{8}}\right\rangle
$$

with the v-semi-slant angle $\theta=\frac{\pi}{4}$.
Example 5.5. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{5}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{12}\right)=\left(x_{2}, \frac{x_{5}+x_{6}}{\sqrt{2}}, \frac{x_{7}+x_{9}}{\sqrt{2}}, \frac{x_{8}+x_{10}}{\sqrt{2}}, x_{1}\right)
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{10}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{6}}\right\rangle
$$

with the v-semi-slant angle $\theta=\frac{\pi}{2}$.
Example 5.6. Define a map $F: \mathbb{R}^{10} \mapsto \mathbb{R}^{6}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{10}\right)=\left(\frac{x_{3}-x_{5}}{\sqrt{2}}, x_{6}, \frac{x_{7}+x_{9}}{\sqrt{2}}, x_{8}, x_{1}, x_{2}\right) .
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}, \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}}\right\rangle
$$

with the v -semi-slant angle $\theta=\frac{\pi}{4}$.

Example 5.7. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \ldots, x_{8}\right)=\left(x_{1}, x_{3} \cos \alpha-x_{5} \sin \alpha, x_{2}, x_{4} \sin \beta+x_{6} \cos \beta\right)
$$

where α and β are constants. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle \text { and } \mathcal{D}_{2}=\left\langle\cos \alpha \frac{\partial}{\partial x_{3}}-\sin \alpha \frac{\partial}{\partial x_{5}}, \sin \beta \frac{\partial}{\partial x_{4}}+\cos \beta \frac{\partial}{\partial x_{6}}\right\rangle
$$

with the v-semi-slant angle θ satisfying $\cos \theta=|\sin (\alpha-\beta)|$.

6. Open questions

We investigated some properties on a v-semi-slant submersion

$$
F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)
$$

In particular, we studied the integrabilities of distributions and the totally geodesicness of distributions.

As future projects, we have:

Question.

(1) Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion with the v -semi-slant angle θ.

Then
(a) Can we give a characterization of a semi-slant angle θ ?
(b) What kind of rigidity problems can we do on the map F ?
(c) Using the map F, what are the advantages for studying complex geometry?
(2) In this paper, we only studied the properties of v-semi-slant submersions $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$.

So, as future works, we need to investigate the properties of v -semiinvariant submersions, v-slant submersion, and v-anti-invariant submersions (i.e., $\mathcal{D}_{2}=\left(\operatorname{ker} F_{*}\right)^{\perp}$ and $\left.J\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \subset \operatorname{ker} F_{*}\right)($ See Definition 3 and Remark 3.1).

References

[1] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620. 001.0001
[2] J.-P. Bourguignon, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino 1989 (1989), Special Issue, 143-163 (1990).
[3] J.-P. Bourguignon and H. B. Lawson, Jr., Stability and isolation phenomena for YangMills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. http://projecteuclid. org/euclid.cmp/1103908963
[4] B. Chen, Differential geometry of real submanifolds in a Kähler manifold, Monatsh. Math. 91 (1981), no. 4, 257-274. https://doi.org/10.1007/BF01294767
[5] , Geometry of slant submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
[6] M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. https://doi.org/10.1142/ 9789812562333
[7] C. F. Gauss, Disquisitiones generales circa superficies curvas, 1827, http://gdz.sub.unigoettingen.de/no_cache/dms/load/img/?IDDOC=139389.
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
[9] S. Ianuş, A. M. Ionescu, R. Mocanu, and G. E. Vîlcu, Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg. 81 (2011), no. 1, 101-114. https://doi.org/10.1007/s12188-011-0049-0
[10] S. Ianuş, R. Mazzocco, and G. E. Vîlcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/ s10440-008-9241-3
[11] S. Ianuş and M. Vişinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. http://stacks.iop. org/0264-9381/4/1317
[12] , Space-time compactification and Riemannian submersions, in The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.
[13] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley \& Sons, Inc., New York, 1969.
[14] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
[15] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. http://projecteuclid.org/euclid.mmj/1028999604
[16] K.-S. Park, h-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. https://doi.org/10.4134/BKMS.2012.49.2.329
[17] , h-semi-invariant submersions, Taiwanese J. Math. 16 (2012), no. 5, 1865-1878. https://doi.org/10.11650/twjm/1500406802
[18] , h-semi-slant submersions from almost quaternionic Hermitian manifolds, Taiwanese J. Math. 18 (2014), no. 6, 1909-1926. https://doi.org/10.11650/tjm.18.2014. 4079
[19] K.-S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
[20] B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. https://doi.org/10.2478/s11533-010-0023-6
[21] , , Invariant and anti-invariant Riemannian maps to Kähler manifolds, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 3, 337-355. https://doi.org/10.1142/ S0219887810004324
[22] \qquad , Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 54(102) (2011), no. 1, 93-105.
[23] , Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183. https://doi.org/10.4153/CMB-2011-144-8
[24] _, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2013), no. 2, 629-659. https://doi.org/10.11650/tjm.17.2013.2191
[25] B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165. http://projecteuclid.org/euclid.jdg/1214433303
[26] _, G, G^{\prime}-Riemannian submersions and nonlinear gauge field equations of general relativity, in Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.

Kwang Soon Park
Division of General Mathematics
University of Seoul
Seoul 02504, Korea
Email address: parkksn@gmail.com

