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CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL

FORMULA FOR THE FIRST CHERN NUMBER

Jungchan Lee, JeongHyeong Park, and Kouei Sekigawa

Abstract. We establish an integral formula for the first Chern number of
a compact almost Hermitian surface and derive curvature identities from
the integral formula. Further, we provide some results as applications of
the identities.

1. Introduction

In [1], Berger derived a curvature identity on a 4-dimensional compact ori-
ented Riemannian manifold from the generalized Gauss-Bonnet formula based
on the fundamental fact that the Euler number is a topological invariant.
Kuz’mina [11] and subsequently Labbi [12] extended Berger’s result to any
even-dimensional Riemannian manifold. Especially, Labbi showed that the
obtained curvature identities hold without the compactness assumption. Euh,
Park and Sekigawa [3] gave a direct proof for Labbi’s result in the 4-dimensional
case and some applications of the curvature identity [4, 5]. We refer [6] for the
universality of the curvature identities in the Riemannian setting and we refer
[7] for the universality of the curvature identities in the pseudo-Riemannain
setting.

Motivated by the above observation, it is also worthwhile to study similar
topics for the Riemannian manifolds equipped with some additional geometric
structures such as almost complex structure, almost contact structure and so
on. In this paper, we will focus on the following question:

Question A. What can we deduce from the integral formula for the Chern
number of compact almost Hermitian surfaces?

We first establish an integral formula for the Chern number of a compact
almost Hermitian surface. We regard the obtained integral formula as a func-
tional on the space of all almost Hermitian structures on a compact complex

Received August 27, 2012.
2010 Mathematics Subject Classification. 53B20, 53C20.
Key words and phrases. Euh-Park-Sekigawa identity, first Chern number, almost Hermit-

ian surface.
This work was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MEST) (2012-0005282).

c©2013 The Korean Mathematical Society

1261



1262 J. LEE, J. PARK, AND K. SEKIGAWA

surface and derive a required curvature identity as the Euler-Lagrange equa-
tion of the integral based on Wu’s Theorem [18]. In the last section, we provide
some application of the curvature identity.

2. Preliminaries

In this section, we prepare some fundamental terminologies and formulas in
almost Hermitian geometry which we need in our forthcoming discussions.

Let M = (M, g, J) be a 2n-dimensional almost Hermitian manifold with
the almost Hermitian structure (g, J). In particular, we call a 4-dimensional
almost Hermitian manifold an almost Hermitian surface briefly. We denote by
ω the Kähler form of almost Hermitian structure (g, J) defined by ω(X,Y ) =
g(X, JY ), for X,Y ∈ X(M), X(M) denoting the Lie algebra of all smooth
vector fields on M . We assume that M is oriented by the volume form dvg =
(−1)n

n! ωn. We denote the Riemannian connection, the curvature tensor, the
Ricci tensor and the scalar curvature ofM by ∇, R, ρ and τ , respectively. The
curvature tensor R is defined by

(2.1) R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z

for X , Y , Z ∈ X(M). The Ricci ∗-tensor ρ∗ is a (0, 2)-tensor field onM defined
by

(2.2)

ρ∗(X,Y ) = tr (Z 7→ R(X, JZ)JY )

=
1

2
tr (Z 7→ R(X, JY )JZ)

for X , Y , Z ∈ X(M). The ∗-scalar curvature τ∗ is the trace of the linear
endomorphism Q∗ defined by g(Q∗X,Y ) = ρ∗(X,Y ) for X , Y ∈ X(M). The
Ricci ∗-tensor ρ∗ satisfies

(2.3) ρ∗(X,Y ) = ρ∗(JY, JX)

for any X , Y ∈ X(M) [17]. Thus, ρ∗ is symmetric if and only if ρ∗ is J-
invariant. By the definition (2.2) of the Ricci ∗-tensor ρ∗, we can check that
the Ricci ∗-tensor ρ∗ coincides with the Ricci tensor ρ (and hence, also τ∗ = τ)
if M is a Kähler. In this paper, we adopt the usual notational convention in
the tensor analysis. For any local basis {ei} = {e1, e2, . . . , e2n}, we set

gij = g(ei, ej), Jej = Jj
iei, R(ei, ej)ek = Rijk

lel,

ρij = ρ(ei, ej), ρ∗ij = ρ∗(ei, ej), (∇eiJ)ej = ∇iJj
kek,

Rijkl = g(R(ei, ej)ek, el), R(Jei, ej)ek = Rījk
lel,

Rījkl = Ji
aRajkl = g(R(Jei, ej)ek, el), Rīj̄k̄l̄ = Ji

aJj
bJk

cJl
dRabcd,

ρīj = Ji
aρaj = ρ(Jei, ej), . . . , ρīj̄ = Ji

aJj
bρab = ρ(Jei, Jej),

ρ∗ īj = Ji
aρ∗aj = ρ∗(Jei, ej), . . . , ρ

∗

īj̄ = Ji
aJj

bρ∗ab = ρ∗(Jei, Jej),
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∇iJjk = g((∇eiJ)ej , ek) = gkl∇iJj
l,

∇īJjk = Ji
a∇aJjk = g((∇JeiJ)ej , ek), . . . , ∇īJj̄k̄ = Ji

aJj
bJk

c∇aJbc,

and so on. We also denote by (gij) the inverse matrix of (gij). Then, we have

(2.4) Jij = −Jji, ωij = −Jij , ∇iJjk = −∇iJkj , ∇iJj̄k̄ = −∇iJjk.

Now, we denote real vector bundle of 2-forms overM by Λ2M . Taking account
of (2.4), we see that the vector bundle Λ2M can be decomposed as follows:

(2.5) Λ2M = Rω ⊕ Λ1,1
0 M ⊕ LM (orthogonal direct sum),

where Λ1,1
0 M denotes the vector bundle of real primitive J-invariant 2-forms

overM , and LM is the vector bundle of real J-skew-invariant 2-forms overM ,
respectively. Now, a linear connection ∇′ is called a Hermitian connection (or
a Chern connection) on M if both of the almost complex structure J and the
Riemannian metric are parallel with respect to ∇′. Let W be a (1,2)-tensor
field on M satisfying the following condition:

(2.6) g(W (X,Y ), Z) + g(W (X,Z), Y ) = 0

for any X , Y ,Z ∈ X(M). Then, it is known that any Hermitian connection ∇′

is given by

(2.7) ∇′

XY = ∇XY +
1

2
(−J(∇X)Y +W (X,Y )− JW (X, JY ))

for X ,Y ∈ X(M) [19]. We denote by R′ the curvature tensor of the linear

connection defined by (2.7) and by γ
′

1 the first Chern form corresponding to

the linear connection ∇′

. Then, we see that the first Chern form γ′1 = (γ′ij) is
given by

(2.8) 8πγ′ij = R′

ijk
l
Jl

k

[9]. Then, from (2.6), (2.7) and (2.8), by direct calculation, we have the fol-
lowing equality:

(2.9) γ′1 =
1

8π
(−φ+ 2ψ − 2dη),

where φ and ψ are 2-forms on M defined respectively by

(2.10) φ(X,Y ) = tr(Z → J(∇XJ)(∇Y J)Z),

and

(2.11) ψ(X,Y ) = tr(Z → JR(X,Y )Z)

for X , Y , Z ∈ X(M) [9], and further η = (ηi) is the 1-form on M defined by

(2.12) ηi = −Wik
lJk

l .

In the case where M is compact, the first Chern class c1(M) of M is given
by the de Rham class [γ′1] ∈ H2(M ;R) due to the Chern-Weil theory. Thus,
from the equality (2.9) with (2.12), we see that the first Chern class c1(M)
of M does not depend the choice of the (1,2)-tensor field W with (2.6) on
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M . Therefore, it seems sufficiently enough to discuss based on the first Chern
form γ′1 corresponding to W = 0, namely the first Chern form γ1 given by the
following

(2.13) γ1 =
1

8π
(−φ+ 2ψ).

From (2.13), when dimM = 4, it follows that the first Chern number c1(M)2

of M is given by

(2.14) c1(M)2 = [γ1 ∧ γ1] ∈ H4(M ;R)(≃ R).

3. Integral formula for c1(M)2

Let M = (M, g, J) be a compact almost Hermitian surface. Then, from
(2.13) and (2.14), we see that the first Chern number c1(M)2 of M is given by
the following integral:

(3.1) c1(M)2 =

∫

M

γ1 ∧ γ1 =
1

64π2

∫

M

(φ ∧ φ− 4φ ∧ ψ + 4ψ ∧ ψ).

Now, let {ei} = {e1, e2 = Je1, e3, e4 = Je3} be any local unitary basis and
{ei} be local dual basis of {ei}. Then, from (2.4) and (2.5), we see that the
following equality

(3.2) ∇ω = α⊗ 1√
2
(e1 ∧ e3 − e2 ∧ e4) + β ⊗ 1√

2
(e1 ∧ e4+e2 ∧ e3)

holds for some local 1-forms α and β. From (2.4) and (3.2), we get

(3.3)
αi = −

√
2∇iJ13 =

√
2∇iJ24,

βi = −
√
2∇iJ14 = −

√
2∇iJ23,

where αi = α(ei) and βi = β(ei), i = 1, 2, 3, 4. From (2.10) and (3.3), we get
also

φ12 = 2(α2β1 − α1β2), φ13 = 2(α3β1 − α1β3),

φ14 = 2(α4β1 − α1β4), φ23 = 2(α3β2 − α2β3),(3.4)

φ24 = 2(α4β2 − α2β4), φ34 = 2(α4β3 − α3β4).

From (3.4), we have

(3.5) φ = −2α ∧ β.
Thus, from (3.5), we have immediately

(3.6) φ ∧ φ = 0.

On the other hand, from (2.11), we have

(3.7) ψ(X,Y ) = −2ρ∗(X, JY )
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for X , Y ∈ X(M). Thus, from (3.7), we get

(3.8)

ψ12 = 2ρ∗11, ψ13 = −2ρ∗14,

ψ14 = 2ρ∗13, ψ23 = −2ρ∗24 = −2ρ∗31,

ψ24 = 2ρ∗23 = −2ρ∗41, ψ34 = 2ρ∗33.

Thus, from (3.8), we have

(3.9)

ψ ∧ ψ = 2(ψ12ψ34 − ψ13ψ24 + ψ14ψ23)dvg

= 8(ρ∗11ρ
∗

33 + ρ∗14ρ
∗

23 − ρ∗13ρ
∗

24)dvg

= {(τ∗)2 − 2
∑

ρ∗ijρ
∗

ji}dvg.
Further, from (3.3), (3.4) and (3.8), we have
(3.10)
φ ∧ ψ = (φ12ψ34 − φ13ψ24 + φ14ψ23 + φ34ψ12 − φ24ψ13 + φ23ψ14)dvg

= 2{φ12ρ∗33 − φ13ρ
∗

23 − φ14ρ
∗

24 + φ34ρ
∗

11 + φ24ρ
∗

14 + φ23ρ
∗

13}dvg

=
{

∑

ρ∗ij(∇jJab)(∇sJat)Ji
sJb

t +
τ∗

2

∑

(∇cJab)(∇sJta)Jb
tJc

s
}

dvg.

Therefore, from (3.6), (3.9) and (3.10), we have finally the following.

Theorem 1. Let M = (M, g, J) be a compact almost Hermitian surface. Then

the first Chern number c1(M)2 is given by the following integral formula:
(3.11)

c1(M)2 =
1

16π2

∫

M

{

(τ∗)2 − 2
∑

ρ∗ijρ
∗

ji −
∑

ρ∗ij(∇jJab)(∇sJat)Ji
sJb

t

− τ∗

2

∑

(∇cJab)(∇sJta)Jb
tJc

s
}

dvg.

Remark 1. In [16], Sekigawa also gave another integral formula for the first
Chern number c1(M)2 of a compact almost Hermitian manifold M = (M, g, J)
by using the Lee-form and the Nijenhuis tensor of J (for the definitions of the
Lee-form and the Nijenhuis tensor, see §5).

4. 1-parameter deformations of (g, J)

LetM be a 2n-dimensional compact, orientable, smooth manifold admitting
an almost complex structure. We denote byM(M) the space of all Riemannian
metrics on M and by Ω2

nd(M) the space of all non-degenerate 2-forms on M .
We also denote by AH(M) the space of all almost Hermitian structures on M .
By our assumption, the space AH(M) is non-empty. It is well-known that the
spaces M(M), Ω2

nd(M) and AH(M) are contractible Frechet manifolds. Fur-
ther, we can check thatAH(M) can be identified with a subspace of the product
space M(M)×Ω2

nd(M) by the map ι : AH(M) → M(M)×Ω2
nd(M) defined by

ι : (g, J) 7−→ (g, ω), where ω is the Kähler form of (g, J). Alternatively, in the
sequel, we identify the space AH(M) with the space ι(AH(M)) under the map
ι. Now, let (g, J) be any point of AH(M) and γ(t) = (g(t), J(t))(|t| < ε, ε > 0)
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be a smooth curve on AH(M) through γ(0) = (g(0), J(0)) = (g, J). We
call the curve γ(t) = (g(t), J(t)) also a one-parameter deformation of (g, J).
We set α(t) = ω(t) − ω, where ω(t) is the Kähler form of (g(t), J(t)). Let
(U ;x1, x2, . . . , x2n) be a local coordinate system on a coordinate neighborhood
U in M with respect to the natural frame field {∂i ≡ ∂

∂xi }i=1,2,...,2n on U , we

set g(t)(∂i, ∂j) = g(t)ij , J(t)∂i = J(t)i
j
∂j , α(t)(∂i, ∂j) = α(t)ij , and further

(4.1)
d

dt

∣

∣

∣

∣

t=0

g(t)ij = hij ,
d

dt

∣

∣

∣

∣

t=0

J(t)j
i = Kj

i,
d

dt

∣

∣

∣

∣

t=0

α(t)ij = Aij .

Then, we see that h = (hij), A = (Aij) and K = (Kj
i) are a symmet-

ric (0, 2)-tensor field, a 2-form and a (1, 1)-tensor field on M , respectively.
We may regard the pair (h,K) (resp. (h,A)) as the tangent vector of the
curve γ(t) = (g(t), J(t)) (resp. γ̃(t) = ι(γ(t)) = (g(t), ω(t))) at the point
γ(0) = (g(0), J(0)) = (g, J) ∈ AH(M) (resp. at the point γ̃(0) = ι(γ(0)) =
(g(0), ω(0)) = (g, ω)). We have also

(4.2)
d

dt

∣

∣

∣

∣

t=0

g(t)ij = −hij .

We denote the volume form of the metric g(t) by dvg(t). Then, we have

(4.3)
d

dt

∣

∣

∣

∣

t=0

dvg(t) =
1

2
(gijhij)dvg.

We denote the Riemannian connection, the curvature tensor, the Ricci tensor,
the scalar curvature of g(t) by ∇(t), R(t), ρ(t) and τ(t) and further the Ricci ∗-
tensor and the ∗-scalar curvature of (g(t), J(t)) by ρ∗(t) and τ∗(t), respectively.
Let Γ(t)ij

k
the Christoffel’s symbol of ∇(t). Then, we have

(4.4)
d

dt

∣

∣

∣

∣

t=0

Γ(t)ij
k
=

1

2
gka(∇ihaj +∇jhia −∇ahij).

Thus, from (4.4), we have further

d

dt

∣

∣

∣

∣

t=0

R(t)ijk
l

(4.5)

=
1

2
(−Rijk

aha
l +Rija

lhk
a +∇i∇khj

l −∇j∇khi
l −∇i∇lhjk +∇j∇lhik),

d

dt

∣

∣

∣

∣

t=0

ρ(t)ij

(4.6)

=
1

2
(−Raij

bhb
a + ρiahj

a +∇a∇jhi
a −∇i∇jha

a −∇a∇ahij +∇i∇ahj
a),

(4.7)
d

dt

∣

∣

∣

∣

t=0

τ(t) = −ρijhij +∇i∇jhij −∇i∇iha
a.
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Here, since γ(t) = (g(t), J(t)) ∈ AH(M), from (4.1), we have the following
equalities [13]:

(4.8) Ka
iJj

a + Ja
iKj

a = 0,

(4.9) hij = habJi
aJj

b +KiaJj
a + JiaKj

a,

(4.10) Kj
i = −haiJja −Aj

i.

From (4.9) and (4.10), we have

(4.11) hij = −habJiaJjb + Ji
aAaj + Jj

aAai.

From (4.10) and (4.11), we have also

(4.12) Kj
i = hj

aJa
i −Ab

aJa
iJj

b.

Conversely, for any pair (h,A) satisfying (4.11), we define (1, 1)-tensor field

K = (Kj
i) by (4.12). Then, we can check that the pair (h,K) satisfies (4.8)

∼ (4.10), and that the pair corresponds to the pair (h,K) under the map ι

coincides with the pair (h,A). Further, Gil-Medrano and Michor [8] showed
that, for any (g, ω) ∈ ι(AH(M)), a pair (h,A) of a symmetric (0, 2)-tensor h
and a 2-form A on M is a tangent vector of the space ι(AH(M)) at (g, ω) if
and only if (h,A) satisfies the equality (4.11). Now, from (2.2), (4.2), (4.4) and
(4.5), taking account of (4.10), (4.11) and (4.12), we have also
(4.13)

d

dt

∣

∣

∣

∣

t=0

ρ∗(t)ij = ρ∗iahj
a − 1

2
Riua

bJj
uJachbc −

1

2
JabJj

c∇i∇ahbc

+
1

2
JabJj

c∇c∇ahbi +
1

2
(2Jj

qρ∗i
p − Jj

uJpaJqbRiuab)Apq,

(4.14)
d

dt

∣

∣

∣

∣

t=0

τ∗(t) =ρ∗abh
ab − J iaJjb∇a∇bhij − 2J ipρ∗iqAp

q,

(4.15)

d

dt

∣

∣

∣

∣

t=0

∇(t)iJ(t)j
k
=− ha

k∇iJj
a +

1

2
Jj

a(∇ahi
k −∇iha

k −∇khia)

− 1

2
Ja

k(∇ihj
a +∇jhi

a −∇ahij)−∇iAj
k.

In [8], Gil-Medrano and Michor also proved that the tangent space

T(g,ω)ι(AH(M))

of the space ι(AH(M)) at any point (g, ω) can be decomposed as follows:

(4.16) T(g,ω)ι(AH(M)) = N 1
(g,ω) ⊕N 2

(g,ω) ⊕N 3
(g,ω),
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where N 1
(g,ω), N 2

(g,ω) and N 3
(g,ω) are the subspaces of T(g,ω)(M(M)×Ω2

nd(M))

defined by
N 1

(g,ω) ={(h, 0)|hīj̄ = −hij},
N 2

(g,ω) ={(0, A)|Aīj = Aij̄},
N 3

(g,ω) ={(h,A)|Aij = −hīj , hīj̄ = hij}.
Then, from (4.8) ∼ (4.12), we see that (h,A) ∈ N 2

(g,ω) ∪ N 3
(g,ω) if and only if

h = (hij) is expressed as follows:

(4.17) hij =
1

2
(Aīj +Aj̄i)

for any 2-form A = (Aij) on M . Let (g, J) be any point of AH(M). Then,
we call the deformation defined by a curve γ(t) = (g(t), J(t))(|t| < ε, ε > 0)
in AH(M) through the point (g(0), J(0)) = (g, J) a Type (m)-deformation if

the tangent vector dγ̃
dt

= d(ι◦γ)
dt

belongs to the subspace Nm
(g,ω)(m = 1, 2, 3). In

[13], we call the deformation defined by the curve γ(t) = (g(t), J(t)) ∈ AH(M)
through the point (g(0), J(0)) = (g, J) the Blair-Ianus deformation of (g, J) if

the tangent vector dγ̃
dt

of the curve γ̃ = ι◦γ belongs to N 1
(g(t),ω(t)) for any t(|t| <

ε), and also the Type (2)-deformation, Type (3)-deformation the deformation
of Type (ii) in [13]. Gil-Medrano and Michor [8] provided explicit examples of
a Blair-Ianus deformation, and also of two deformations of Type (ii) in [13],
one is of Type (2) and the other is of Type (3).

5. Curvature identities

Let M = (M, g, J) be an almost Hermitian surface. Then, we see that there
exists a 1-form θ = (θi) on M satisfying the following equation [14]:

(5.1) dω = θ ∧ ω.
The 1-form θ is called the Lee-form of the almost Hermitian structure (g, J)
on M , which is locally expressed as

(5.2) θi = −Jij∇aJj
a.

From (5.1), we have immediately

(5.3) dθ ∧ ω = 0.

We may easily check that the equation (5.3) implies

(5.4) J ij∇iθj = 0.

By making use of (2.4)and (5.1), we have the following equality:

(5.5) 2∇iJjk = −θjJik + θkJij + Jj
aθagik − Jk

aθagij +NjkaJ
a
i ,

[16], where N = (Nij
k) is the Nijenhuis tensor of the almost complex structure

J defined by

(5.6) N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ]
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forX ,Y ∈ X(M). First of all, we can show that the following curvature equality
holds on any almost Hermitian surface M :

(5.7) ρ∗ij + ρ∗ji − ρij − ρīj̄ =
1

2
(τ∗ − τ)gij ,

[10]. Concerning Question A, the following question will naturally arise:

Question B. Can we derive curvature identities besides (5.7) from the integral
formula in Theorem 1 for the Chern number of compact almost Hermitian
surfaces?

We here recall the following Wu’s Theorem:

Theorem 2 ([18]). Let M = (M, g, J) be a compact almost Hermitian surface.

Then the following equality holds:

(5.8) c1(M)2 = 2χ(M) + p1(M),

where χ(M) and p1(M) are the Euler number and the first Pontrjagin number

of M , respectively.

From Theorem 2, we see that the first Chern number c1(M)2 of M given by
(3.11) in Theorem 1 is a topological invariant of M by the Novikov’s Theorem
[15], and hence, c1(M)2 does not depend on the choice of almost Hermitian
structures on M . We also notes that the second Chern number c2(M) of M
coincides with the Euler number χ(M) of M . Now, we set

(5.9)
F(g, J) =

∫

M

{

(τ∗)2 − 2ρ∗ijρ∗ji − gjlgikρ∗uk(∇iJa
b)(∇jJs

a)Jl
uJb

s

− 1

2
τ∗gcl(∇lJa

b)(∇sJu
a)Jb

uJc
s
}

dvg.

Then, from Theorem 1, we have

(5.10) c1(M)2 =
1

16π2
F(g, J),

and F(g, J) is constant on the spaceAH(M). Let (g, J) be any point ofAH(M)
and γ(t) = (g(t), J(t))(|t| < ε) be any smooth curve in AH(M) through the
point (g(0), J(0)) = (g, J). Thus, from Theorem 1 and Theorem 2, taking
account of (5.8) and (5.10), we have

(5.11)
d

dt

∣

∣

∣

∣

t=0

F(g(t), J(t)) = 0.

Here, from (4.3) and (4.14), we get
(5.12)
d

dt

∣

∣

∣

∣

t=0

∫

M

(τ∗(t))2dvg(t) =

∫

M

[{

2τ∗ρ∗ij − 2∇b∇a(τ
∗J iaJjb) +

1

2
(τ∗)2gij

}

hij

− 4τ∗Japρ∗a
q
Apq

]

dvg.
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From (4.2), (4.3) and (4.13), taking account of (2.3), we get

(5.13)

d

dt

∣

∣

∣

∣

t=0

∫

M

ρ∗(t)
ij
ρ∗(t)jidvg(t)

=

∫

M

[{

− ρ∗lkR
k
ab

i
J laJbj − 2∇a∇l(ρ∗klJ

aiJkj) +
1

2
ρ∗

ab
ρ∗bag

ij
}

hij

+ (2J lqρ∗lkρ
∗kp − ρ∗lkJ

lcJpaJqbRk
cab)Apq

]

dvg.

Further, from (4.2), (4.3), (4.13) and (4.15), taking account of (2.3) and the
Green’s Theorem, we get

d

dt

∣

∣

∣

∣

t=0

∫

M

g(t)jlJ(t)l
t
g(t)ikρ∗(t)tk(∇(t)iJ(t)a

b
)(∇(t)jJ(t)s

a
)J(t)b

s
dvg(t)

(5.14)

=

∫

M

[{

− J ivρ∗v
w(∇wJa

b)(∇jJu
a)Jb

u − Jwiρ∗
jc(∇cJa

b)(∇wJu
a)Jb

u

− 1

2
JcvRvws

iJkwJsj(∇kJa
b)(∇cJu

a)Jb
u

+∇s∇c

(

JvjJsiJk
c(∇kJa

b)(∇vJu
a)Jb

u
)

+ 3Jcvρ∗v
k(∇kJa

i)(∇cJ
jw)Jw

a +
1

2
Jcvρ∗v

k(∇kJa
b)(∇cJu

a)Jb
ugij

− 4∇u

(

Jcvρ∗v
i(∇cJ

ju)
)}

hij +
{

JjvJ iqρ∗v
p(∇iJa

b)(∇jJu
a)Jb

u

− 1

2
JjvJ iwJpsJqcRvwsc(∇iJa

b)(∇jJu
a)Jb

u + 2∇i

(

Jjvρ∗v
i(∇jJw

p)Jqw
)

− ρ∗
qi(∇iJa

b)(∇pJu
a)Jb

u − Jjvρ∗v
i(∇iJa

p)(∇jJ
qa)

}

Apq

]

dvg.

Similarly, from (4.2), (4.3), (4.14) and (4.15), we get

d

dt

∣

∣

∣

∣

t=0

∫

M

τ∗(t)g(t)cu(∇(t)uJ(t)a
b)(∇(t)sJ(t)v

a)J(t)b
v
J(t)c

s
dvg(t)

(5.15)

=

∫

M

[{

ρ∗
ij(∇cJa

b)(∇uJv
a)Jb

vJcu −∇l∇k

(

J ikJjl(∇cJa
b)(∇uJv

a)Jb
vJcu

)

− 4∇c

(

τ∗(∇uJ
jc)J iu

)

−3τ∗(∇cJ
jb)(∇uJv

i)Jb
vJcu

− 2τ∗(∇jJa
b)(∇uJv

a)Jb
vJ iu +

1

2
τ∗(∇cJa

b)(∇uJv
a)Jb

vJcugij
}

hij

+
{

− 2J ipρ∗i
q(∇cJa

b)(∇uJv
a)Jb

vJcu − τ∗(∇cJa
p)(∇uJ

qa)Jcu

− τ∗(∇pJa
b)(∇qJv

a)Jb
v + 2∇u

(

τ∗(∇cJ
qb)Jb

pJcu
)}

Apq

]

dvg.

Thus, from (5.11), (5.12), (5.13), (5.14) and (5.15), we have

(5.16)

∫

M

{T ′ijhij + S′pqApq}dvg = 0,
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where

T ′ij = J ivρ∗v
w(∇wJa

b)(∇jJu
a)Jb

u + Jwiρ∗
jc(∇cJa

b)(∇wJu
a)Jb

u

(5.17)

+ 4∇u(J
cvρ∗v

i(∇cJ
ju)) +

1

2
JcvRvws

iJdwJsj(∇dJa
b)(∇cJu

a)Jb
u

−∇s∇c(J
djJsiJk

c(∇kJa
b)(∇dJu

a)Jb
u)

− 3Jcvρ∗v
d(∇dJa

i)(∇cJ
jw)Jw

a

− 1

2
Jcvρ∗v

d(∇dJa
b)(∇cJu

a)Jb
ugij − 1

2
ρ∗

ij(∇cJa
b)(∇uJv

a)Jb
vJcu

+
1

2
∇l∇k(J

ikJjl(∇cJa
b)(∇uJv

a)Jb
vJcu) + 2∇c(τ

∗(∇uJ
jc)J iu)

+
3

2
τ∗(∇cJ

jb)(∇uJv
i)Jb

vJcu + τ∗(∇jJa
b)(∇uJv

a)Jb
vJ iu

− 1

4
τ∗(∇cJa

b)(∇uJv
a)Jb

vJcugij + 2ρ∗lkR
k
ab

i
J laJbj

+ 4∇a∇l(ρ∗klJ
aiJkj)− ρ∗

ab
ρ∗bag

ij + 2τ∗ρ∗ij

− 2∇b∇a(τ
∗J iaJjb) +

1

2
(τ∗)2gij ,

and

S′pq = − JjvJ iqρ∗v
p(∇iJa

b)(∇jJu
a)Jb

u(5.18)

+
1

2
JjvJ iwJpcJqdRvwcd(∇iJa

b)(∇jJu
a)Jb

u

− 2∇i(J
jvρ∗v

i(∇jJw
p)Jqw) + ρ∗

qi(∇iJa
b)(∇pJu

a)Jb
u

+ Jjvρ∗v
i(∇iJa

p)(∇jJ
qa) + J ipρ∗i

q(∇cJa
b)(∇uJv

a)Jb
vJcu

+
1

2
τ∗(∇cJa

p)(∇uJ
qa)Jcu +

1

2
τ∗(∇pJa

b)(∇qJv
a)Jb

v

−∇u(τ
∗(∇cJ

qb)Jb
pJcu)− 4J lqρ∗lkρ

∗kp

+ 2ρ∗lkJ
lcJpaJqbRk

cab − 4τ∗Japρ∗a
q
.

We define T = (Tij) and S = (Sij) by

(5.19) Tij = giagjbT
ab, where T ij =

1

2
(T ′ij + T ′ji),

and

(5.20) Sij = gipgjqS
pq, where Spq =

1

2
(S′pq−S′qp),

respectively. Then, the integral equation (5.16) is rewritten as

(5.21)

∫

M

{T ijhij + SpqApq}dvg = 0.
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Lemma 3 ([2]). Let B = (Bij) be a symmetric (0, 2)-tensor field on M . Then
∫

M

∑

i,j

BijDijdvg = 0

for all symmetric J-skew-invariant (0, 2)-tensor field D if and only if B = (Bij)
= (giagjbB

ab) is J-invariant.

Now, let M = (M, g, J) be any compact almost Hermitian surface and con-
sider any Type (1)-deformation of (g, J). Then, from (5.21), taking account of
Lemma 3, we see that the tensor field T is J-invariant. Similarly, considering
any Type (2) or Type (3)-deformation of (g, J), from (4.17) and (5.21), we have

(5.22)

∫

M

(
1

2
T ijJi

aAaj +
1

2
T ijJj

aAai + SijAij)dvg

=

∫

M

(
1

2
T ajJa

i − 1

2
T iaJa

j + Sij)Aijdvg

=

∫

M

(−T iaJa
j + Sij)Aijdvg = 0

for any 2-form A = (Aij) on M . Thus, from (5.22), we have

(5.23) Tij̄ + Sij = 0.

Therefore, summing up the above arguments, we have the following:

Theorem 4. Let M = (M, g, J) be a compact almost Hermitian surface and

T = (Tij), S= (Sij) be the symmetric (0, 2)-tensor field and the skew-symmetric

(0, 2)-tensor field defined by (5.19) with (5.17) and (5.20) with (5.18), respec-
tively. Then, Tij = Tīj̄, Tij̄+Sij = 0 and hence, Sij = Sīj̄ hold on any compact

almost Hermitian surface M .

Remark 2. Taking use of the equalities (5.4) and (5.5), it seems principally
possible to rewrite the identities obtained in Theorem 1 in terms of the cur-
vature tensor R, the almost complex structure J , the Lee-form θ and their
covariant derivatives. It seems worthwhile to write down their explicit forms
in view of their applications. In the present paper, we shall discuss this for a
Kähler surface in the following section.

6. An application

In this section, we provide an application of Theorem 4. Let M = (M,J, g)
be a Kähler surface. Then, it is well-known that M satisfies the following
identity:

(6.1) Rijkl = RijabJk
aJl

b.

From (6.1), we see easily that the curvature identity (5.7) is trivial. Thus, it is
natural to ask the following related to the Question B:

Question C. Do there exist curvature identities besides (6.1)?
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Concerning Question C, we shall prove the following theorem.

Theorem 5. Let M = (M, g, J) be a compact Kähler surface. Then, in addi-

tion to the identity (6.1), the identity

(6.2) 2ρi
aρja − τρij −

1

2
(|ρ|2 − τ2

2
)gij = 0

holds on M .

Proof. Since M is Kähler, from (5.17), taking account of (6.1), we obtain

(6.3)

T ′

ij̄ = 2ρlkRkl̄ji − 2Ji
a∇a∇jτ + 2Ji

a∇j∇aτ

−|ρ|2Jji + 2τρij̄ +
1

2
τ2Jji

= −2ρklRkl̄ij + |ρ|2Jij + 2τρij̄ −
τ2

2
Jij .

Similarly, from (5.18), we get

(6.4)
S′

ij = −4Jljρ
lkρki + 2ρlkRkl̄ij + 4τρīj

= 4ρj̄
aρai + 2ρklRkl̄ij + 4τρīj .

From (6.4), we see that S′ = (S′

ij) is skew-symmetric and J-invariant and
hence, we have

(6.5)
Sij = S′

ij

= 4ρj̄
aρia + 2ρklRkl̄ij + 4τρīj .

On the other hand, from (6.3), we have

(6.6) T ′

ij = 2ρklRkl̄ij̄ − |ρ|2gij + 2τρij +
τ2

2
gij .

Then, from (6.6), we see that T ′ = (T ′

ij) is symmetric and J-invariant, and
hence we have

(6.7)

Tij = T ′

ij

= 2ρklRkl̄ij̄ − |ρ|2gij + 2τρij +
τ2

2
gij .

Thus, from Theorem 4, (6.5) and (6.7), we have

(6.8)

0 = Tij̄ + Sij

= |ρ|2Jij −
τ2

2
Jij − 2τρij̄ + 4ρiaρj̄

a.

There, from (6.8), we have finally

|ρ|2gij −
τ2

2
gij + 2τρij − 4ρiaρj

a = 0,

and hence

(6.9) 2ρiaρj
a − τρij −

1

2
|ρ|2gij +

τ2

4
gij = 0.
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Thus, completes the proof of Theorem 5. �

We here recall the following curvature identity on any 4-dimensional Rie-
mannian manifold (M, g) [3]:

(6.10) RabciR
abc

j − 2ρi
aρja − 2ρabRiabj + τρij − (

1

4
|R|2 − |ρ|2 + τ2

4
)gij = 0.

Thus, from Theorem 5 and (6.10), we have the following.

Corollary 6. Let M = (M, g, J) be a compact Kähler surface. Then, in

addition to the identity (6.1), the identity

(6.11) RabciR
abc

j − 2ρabRiabj −
1

4
(|R|2 − 2|ρ|2)gij = 0

holds on M .

As we discussed in the introduction, the curvature identity that holds on any
compact Riemannian manifold can be extended to any Riemannian manifold.
Similarly we wonder if a curvature identity (derived from the first Chern num-
ber) that holds on any compact almost Hermitian manifold can be extended to
any almost Hermitian manifold. Thus we raise the following question:

Question D. Do the identities in Theorem 4 hold without compactness as-
sumption?
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mension 4, C. R. Acad. Sci. Paris 227 (1948), 1076–1078.
[19] K. Yano, Differential Geometry on Complex and Almost Complex Spaces, Pergamon

Press, New York, 1965.

Jungchan Lee

Department of Mathematics

Sungkyunkwan University

Suwon 440-746, Korea

E-mail address: hanada14@skku.edu

JeongHyeong Park

Department of Mathematics

Sungkyunkwan University

Suwon 440-746, Korea

E-mail address: parkj@skku.edu

Kouei Sekigawa

Department of Mathematics

Faculty of Science

Niigata University

Niigata, 950-2181, Japan

E-mail address: sekigawa@math.sc.niigata-u.ac.jp


