Bull. Korean Math. Soc. 50 (2013), No. 4, pp. 1261-1275
http://dx.doi.org/10.4134/BKMS.2013.50.4.1261

CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL
FORMULA FOR THE FIRST CHERN NUMBER

JUNGCHAN LEE, JEONGHYEONG PARK, AND KOUEI SEKIGAWA

ABSTRACT. We establish an integral formula for the first Chern number of
a compact almost Hermitian surface and derive curvature identities from
the integral formula. Further, we provide some results as applications of
the identities.

1. Introduction

In [1], Berger derived a curvature identity on a 4-dimensional compact ori-
ented Riemannian manifold from the generalized Gauss-Bonnet formula based
on the fundamental fact that the Euler number is a topological invariant.
Kuz’'mina [11] and subsequently Labbi [12] extended Berger’s result to any
even-dimensional Riemannian manifold. Especially, Labbi showed that the
obtained curvature identities hold without the compactness assumption. Euh,
Park and Sekigawa [3] gave a direct proof for Labbi’s result in the 4-dimensional
case and some applications of the curvature identity [4, 5]. We refer [6] for the
universality of the curvature identities in the Riemannian setting and we refer
[7] for the universality of the curvature identities in the pseudo-Riemannain
setting.

Motivated by the above observation, it is also worthwhile to study similar
topics for the Riemannian manifolds equipped with some additional geometric
structures such as almost complex structure, almost contact structure and so
on. In this paper, we will focus on the following question:

Question A. What can we deduce from the integral formula for the Chern
number of compact almost Hermitian surfaces?

We first establish an integral formula for the Chern number of a compact
almost Hermitian surface. We regard the obtained integral formula as a func-
tional on the space of all almost Hermitian structures on a compact complex
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surface and derive a required curvature identity as the Euler-Lagrange equa-
tion of the integral based on Wu’s Theorem [18]. In the last section, we provide
some application of the curvature identity.

2. Preliminaries

In this section, we prepare some fundamental terminologies and formulas in
almost Hermitian geometry which we need in our forthcoming discussions.

Let M = (M,g,J) be a 2n-dimensional almost Hermitian manifold with
the almost Hermitian structure (g, J). In particular, we call a 4-dimensional
almost Hermitian manifold an almost Hermitian surface briefly. We denote by
w the Kéhler form of almost Hermitian structure (g, .J) defined by w(X,Y) =
g(X,JY), for XY € X(M), X(M) denoting the Lie algebra of all smooth
vector fields on M. We assume that M is oriented by the volume form dv, =
%w". We denote the Riemannian connection, the curvature tensor, the
Ricci tensor and the scalar curvature of M by V, R, p and 7, respectively. The
curvature tensor R is defined by

(2.1) R(X,Y)Z = [Vx,Vy]Z — Vix 1 Z
for X, Y, Z € X(M). The Ricci *-tensor p* is a (0, 2)-tensor field on M defined
by

P (X,Y)=tr (Z+ R(X,JZ)JY)
(2.2) 1
= 5tr (Z = R(X,JY)]Z)

for X, Y, Z € X(M). The %scalar curvature 7* is the trace of the linear
endomorphism Q* defined by ¢g(Q*X,Y) = p*(X,Y) for X, Y € X(M). The
Ricci *-tensor p* satisfies

(2.3) §(X,Y) = p*(JY, JX)

for any X, Y € X(M) [17]. Thus, p* is symmetric if and only if p* is J-
invariant. By the definition (2.2) of the Ricci *-tensor p*, we can check that
the Ricci *-tensor p* coincides with the Ricci tensor p (and hence, also 7 = 7)
if M is a Kéhler. In this paper, we adopt the usual notational convention in
the tensor analysis. For any local basis {e;} = {e1,ea,...,ea,}, we set

gij = g(eie;), Je; = inei, R(e;,ej)er = Rijklel,

pij = pleisej), pij=p*eie;), (Ve J)es = ViJj ey,

Rijki = g(R(e;,ej)ex,er), R(Je;,ej)er = joklel,

Rij = Ji"Rajit = 9(R(Jei, e)er,e),  Rijpr = Ji*J;" 1o T Ravea,
pi; = Ji"paj = p(Jeises), -, pig = Ji"J;"pas = p(Jei, Jej),

P = Ji0 = 0 (Jeies), oo pti = LD 0 = 0" (Jei, Jeg),
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Vidik = 9((Ve,J)ej,ex) = guVidj',

Vidik = Ji"Vadix = 9(Vye, J)ej,er), .., Vidig = Ji*J;" JVadoe,
and so on. We also denote by (¢g%/) the inverse matrix of (g;;). Then, we have
(24)  Jy =~ wy=—Jy, Vi =—Vidiy, Vi = —ViJik.

Now, we denote real vector bundle of 2-forms over M by A?M. Taking account
of (2.4), we see that the vector bundle A2M can be decomposed as follows:

(2.5) A’M =Rw @ A(l)’lM @ LM (orthogonal direct sum),

where Aé’lM denotes the vector bundle of real primitive J-invariant 2-forms
over M, and LM is the vector bundle of real J-skew-invariant 2-forms over M,
respectively. Now, a linear connection V' is called a Hermitian connection (or
a Chern connection) on M if both of the almost complex structure J and the
Riemannian metric are parallel with respect to V. Let W be a (1,2)-tensor
field on M satisfying the following condition:

(2.6) gW(X,Y),Z) +9(W(X,2),Y)=0
for any X, Y.Z € X(M). Then, it is known that any Hermitian connection V'
is given by
’ 1
(2.7) VY =VxY + 5(—J(VX)Y+W(X,Y)—JW(X,JY))

for X,)Y € X(M) [19]. We denote by R’ the curvature tensor of the linear
connection defined by (2.7) and by 71 the first Chern form corresponding to
the linear connection V'. Then, we see that the first Chern form ~} = (vij) 1s
given by

(2.8) 87y = Riy' JIi*

[9]. Then, from (2.6), (2.7) and (2.8), by direct calculation, we have the fol-
lowing equality:

(29) ¥ = o (6 -+ 20— 24n),

where ¢ and 1 are 2-forms on M defined respectively by

(2.10) (X, Y)=tr(Z = J(VxJ)(VyJ)Z),

and

(2.11) Y(X,)Y)=tr(Z - JR(X,Y)Z)

for X, Y, Z € X(M) [9], and further n = (n;) is the 1-form on M defined by
(2.12) n = —Wa! JF.

In the case where M is compact, the first Chern class ¢ (M) of M is given
by the de Rham class [y;] € H?*(M;R) due to the Chern-Weil theory. Thus,
from the equality (2.9) with (2.12), we see that the first Chern class ¢; (M)
of M does not depend the choice of the (1,2)-tensor field W with (2.6) on
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M. Therefore, it seems sufficiently enough to discuss based on the first Chern
form +4 corresponding to W = 0, namely the first Chern form 7, given by the
following

(2.13) "= 8%(—¢ +2¢).

From (2.13), when dim M = 4, it follows that the first Chern number c; (M)?
of M is given by

(2.14) c1(M)? = [y Ay € HY(M;R)(~ R).

3. Integral formula for c; (M)?2

Let M = (M,g,J) be a compact almost Hermitian surface. Then, from
(2.13) and (2.14), we see that the first Chern number ¢;(M)? of M is given by
the following integral:

6D a@ni= [ wam-

1
I /M(¢A¢—4¢Aw+4ww)-

Now, let {e;} = {e1,ea = Jey,e3,e4 = Jeg} be any local unitary basis and

{e’} be local dual basis of {e;}. Then, from (2.4) and (2.5), we see that the
following equality

(3.2) Vw=a®L(el/\63—62/\64)+ﬁ®i(61/\64+62/\63)

V2 V2
holds for some local 1-forms « and . From (2.4) and (3.2), we get
a; = —V2V,J13 = V2V, o,
Bi = —V2ViJi = —V2V; Jas,

where o; = a(e;) and §; = B(e;), i = 1,2,3,4. From (2.10) and (3.3), we get
also

(3.3)

P12 = 2(a2f1 — a1 f2), P13 = 2(a3P1 — a1 B3),
(3.4) d14 = 2(cuf1 — a1 fBy), P23 = 2(azfz — azf33),
P24 = 2(aafo — a2fs), P31 = 2(ufl3 — azfy).

From (3.4), we have

(3.5) ¢ =—-2aANp.
Thus, from (3.5), we have immediately
(3.6) dNp=0.

On the other hand, from (2.11), we have
(3.7) B(X,Y) = —20"(X, JY)
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for X, Y € X(M). Thus, from (3.7), we get
Y12 =2p"y, P13 =—2p"yy,
(3.8) Vra =2p"y3, g = —2p"y = —2p"5y,
You =2p"53 = —2p"yy,  th3a = 2p"gs.
Thus, from (3.8), we have
YA = 2(P121P34 — V13024 + P141003)dvy
(3.9) = 8(p11P33 + P1aP23 — P13P34)dVg
={(r")? -2 Zp;}p}%}dvg-
Further, from (3.3), (3.4) and (3.8), we have

(3.10)
O N Y = (P121034 — G13024 + Pr4W23 + P3at12 — P2uth13 + Pa3)14)dUy

= 2{P12p33 — P13P33 — P14P34 + P34P11 + P2ap14 + P23p13}dUy
%
={> 05 (ViJa)(Vadar) Ji"T' + 5} > (Vedan) (Vadia) Jo Ty,
Therefore, from (3.6), (3.9) and (3.10), we have finally the following.

Theorem 1. Let M = (M, g, J) be a compact almost Hermitian surface. Then
the first Chern mnumber c¢1(M)? is given by the following integral formula:
(3.11)

1 * * % * s
Cl(M)2 = 1672 /M {(T )2 - QZpijpji - Zpij(ijab)(vsJat)Ji Jbt

T* )
Y Z(chab)(vsjta)Jbthé}dvg.

Remark 1. In [16], Sekigawa also gave another integral formula for the first
Chern number ¢ (M)? of a compact almost Hermitian manifold M = (M, g, J)
by using the Lee-form and the Nijenhuis tensor of J (for the definitions of the
Lee-form and the Nijenhuis tensor, see §5).

4. l-parameter deformations of (g, J)

Let M be a 2n-dimensional compact, orientable, smooth manifold admitting
an almost complex structure. We denote by M (M) the space of all Riemannian
metrics on M and by Q2 ,(M) the space of all non-degenerate 2-forms on M.
We also denote by AH (M) the space of all almost Hermitian structures on M.
By our assumption, the space AH (M) is non-empty. It is well-known that the
spaces M(M), Q2 ,(M) and AH(M) are contractible Frechet manifolds. Fur-
ther, we can check that AH (M) can be identified with a subspace of the product
space M(M) x Q2 ,(M) by the map ¢ : AH(M) — M(M)x Q2 (M) defined by
t:(g,J) — (g,w), where w is the Kéhler form of (g, J). Alternatively, in the
sequel, we identify the space AH (M) with the space t(AH(M)) under the map
t. Now, let (g, J) be any point of AH (M) and v(t) = (g(t), J(¢))(|t] < &, > 0)
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be a smooth curve on AH (M) through ~(0) = (¢(0),J(0)) = (g,J). We
call the curve y(t) = (g(¢), J(t)) also a one-parameter deformation of (g,.J).
We set a(t) = w(t) — w, where w(t) is the Kéhler form of (g(¢), J(t)). Let
(U;zt,2%,...,2°") be a local coordinate system on a coordinate neighborhood
U in M with respect to the natural frame field {9; = %}i:172,___72n on U, we
set g(t)(az, 8]) = g(t)ij7 J(t)az = J(t)ijaj, a(t)(&, aj) = Oé(t)ij, and further

d d ) ) d
11 = )i = hij, —| J@t); =K' — t)ij = Ayj.
(4.1) dt t:OQ( )ij Pt (t); J dt t:OO‘( )ij J
Then, we see that h = (hi),A = (A;;) and K = (K;') are a symmet-
ric (0,2)-tensor field, a 2-form and a (1,1)-tensor field on M, respectively.
We may regard the pair (h, K) (resp. (h,A)) as the tangent vector of the
curve (t) = (g(t), J(t)) (resp. 5(t) = ¢(v(t)) = (9(t),w(t))) at the point
+(0) = (9(0), J(0)) = (g,]) € AH(M) (resp. at the point 7(0) = «((0)) =
(9(0),w(0)) = (g,w)). We have also
a
dt
We denote the volume form of the metric g(t) by dvgy). Then, we have

(4.2) g(t)¥ = —h.

t=0

1
4.3 — dvgpny = = (g hi;)dv,.
( ) dt o g(t) 2(9 ]) 9
We denote the Riemannian connection, the curvature tensor, the Ricci tensor,
the scalar curvature of g(t) by V(t), R(t), p(t) and 7(t) and further the Ricci -
tensor and the x-scalar curvature of (g(t), J(t)) by p*(t) and 7*(t), respectively.

Let T'(t);;” the Christoffel’s symbol of V(t). Then, we have

d [
(44) % F(t)ij = 59k (Vihaj + thm — Vahij).
=0
Thus, from (4.4), we have further
(4.5)
d !
1 R
dt o ( )Jk
1
= 5(_Rijkahal + Rija' hi® + ViVih;' = V;Vihi' = ViV hji, + Vi Vi),
(4.6)
d
dt|,_, p(t)i;
1
= S(~Rais"he" + piah;® + VaV i = ViViha" = V*Vahi; + ViVah;®),
d g o . .
(4.7) — T(t) = —p;;h"7 + V'V h; — V'V;ho“.
dt |
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Here, since v(t) = (g(¢t), J(t)) € AH(M), from (4.1), we have the following
equalities [13]:

(4.8) K ' J;* + J,'K;* = 0,
(4.9) hij = hapJi"J;" + Kio J;" + Jia K%,
(4.10) K" = —hy'J;* — Aj'.

From (4.9) and (4.10), we have

(4.11) hij = —hapJi"J;" + J;i* Agj + J; Agi.
From (4.10) and (4.11), we have also

(4.12) K" =h"J," — AT, TP

Conversely, for any pair (h, A) satisfying (4.11), we define (1, 1)-tensor field
K = (K;") by (4.12). Then, we can check that the pair (h, K) satisfies (4.8)
~ (4.10), and that the pair corresponds to the pair (h, K) under the map ¢
coincides with the pair (h, A). Further, Gil-Medrano and Michor [8] showed
that, for any (g,w) € t(AH(M)), a pair (h, A) of a symmetric (0, 2)-tensor h
and a 2-form A on M is a tangent vector of the space ((AH(M)) at (g,w) if
and only if (h, A) satisfies the equality (4.11). Now, from (2.2), (4.2), (4.4) and
(4.5), taking account of (4.10), (4.11) and (4.12), we have also

(4.13)
4 “(t)ij = pih® — L Rewd T T e — % TV, Vah
dt tzop ij = Piglly 9 iua j be 2 7 1 Vallbe
1 . 1
+ §J“bJj°VCVthi - 5(2qup*f — T TP TP Rian) Ay
d * * 71.ab ia 7jb ip ok
(414) % T (t) :pabh - JeJg VaVbhij —2J ppiquq,
t=0
d k k a, 1 4 k k k
T V()i J(t);" =—ha Vid;* + §Jj (Vahi" = Vihe" — V¥hia)
(4.15) t=0

- %Jak(vihﬁ + Vjhi® = V*hij) — ViA;".
In [8], Gil-Medrano and Michor also proved that the tangent space
Tigw) L (AH(M))
of the space ((AH(M)) at any point (g,w) can be decomposed as follows:
(4.16) Tigp UAAHM)) = Mgy © Nig) ® Ny
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where N ), N7, ) and NP ) are the subspaces of T(y ) (M(M) x Q2 (M)
defined by

Ny =1(h,0)[hz5 = —his},

‘/\/‘(Qg,w) :{(OaA)|A€j = Aij},

NG oy ={(h, A)|Aij = =hsj, hg; = hij}.
Then, from (4.8) ~ (4.12), we see that (h, 4) € N? ) UA/E;,w) if and only if

(9w
h = (h;j) is expressed as follows:

1
(4.17) hij = 5 (A3 + Aji)

for any 2-form A = (A;;) on M. Let (g,J) be any point of A (M). Then,
we call the deformation defined by a curve v(t) = (g(¢), J(t))(|t] < g,e > 0)
in AH(M) through the point (g(0), .J(0)) = (g,J) a Type (m)-deformation if
the tangent vector ‘Z—j = % belongs to the subspace J\/'(”;w)(m =1,2,3). In
[13], we call the deformation defined by the curve v(t) = (g(¢), J(t)) € AH(M)
through the point (g(0), J(0)) = (g, J) the Blair-Tanus deformation of (g, J) if

the tangent vector ‘Z—Z of the curve 4 = 1o belongs to J\/(lg(t)w(t)) for any t(|t| <
¢), and also the Type (2)-deformation, Type (3)-deformation the deformation
of Type (i7) in [13]. Gil-Medrano and Michor [8] provided explicit examples of
a Blair-Tanus deformation, and also of two deformations of Type (ii) in [13],
one is of Type (2) and the other is of Type (3).

5. Curvature identities

Let M = (M, g,J) be an almost Hermitian surface. Then, we see that there
exists a 1-form 0 = (0;) on M satisfying the following equation [14]:

(5.1) dw =0 Nw.

The 1-form 6 is called the Lee-form of the almost Hermitian structure (g, J)
on M, which is locally expressed as

(5.2) 0; = —J7V o J;"

From (5.1), we have immediately

(5.3) do Nw=0.

We may easily check that the equation (5.3) implies

(5.4) JUV,0; = 0.

By making use of (2.4)and (5.1), we have the following equality:
(5.5) 2Vidj = —0; ik + OxJij + J;"009ik — Jiu“009ij + NikaJ?,

[16], where N = (N;;") is the Nijenhuis tensor of the almost complex structure
J defined by

(5.6) N(X,Y)=[JX,JY] - [X,Y] = J[JX,Y] - J[X, Y]
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for XY € X(M). First of all, we can show that the following curvature equality
holds on any almost Hermitian surface M:

1
2

[10]. Concerning Question A, the following question will naturally arise:

(5.7) P i+ P = pig — pi = 5 (77 = T)gis,

Question B. Can we derive curvature identities besides (5.7) from the integral
formula in Theorem 1 for the Chern number of compact almost Hermitian
surfaces?

We here recall the following Wu’s Theorem:

Theorem 2 ([18]). Let M = (M, g, J) be a compact almost Hermitian surface.
Then the following equality holds:

(5.8) c1(M)? = 2x(M) + p1 (M),

where x(M) and p1(M) are the Euler number and the first Pontrjagin number
of M, respectively.

From Theorem 2, we see that the first Chern number ¢, (M)? of M given by
(3.11) in Theorem 1 is a topological invariant of M by the Novikov’s Theorem
[15], and hence, ¢;(M)? does not depend on the choice of almost Hermitian
structures on M. We also notes that the second Chern number co(M) of M
coincides with the Euler number x (M) of M. Now, we set

J)Z/ {(7%)2 = 2p*7 s — ¢ g™ Pl (Vi ) (VT I Ty
(5.9) M

1 3
- 2 T Cl(vl‘] )(vsJua)Jbché}dUg.

Then, from Theorem 1, we have

1

2
(5.10) al(M)” = 7.5F(9,J),
and F(g, J) is constant on the space AH(M). Let (g, J) be any point of AH (M)
and y(t) = (g(t), J(t))(]t| < €) be any smooth curve in AH (M) through the
point (g(O), J(0)) = (g,J). Thus, from Theorem 1 and Theorem 2, taking
account of (5.8) and (5.10), we have

d
(5.11) 91 e, a0) =0
t=0
Here, from (4.3) and (4.14), we get
(5.12)
d

1] * 114 TJ 1 * ©j
/ (7 (1)) 2duy, :/ [{2r0" — 9V, W (r* T J7) 4 L ()26 Y
dt t=0J M M 2

— AT JPpi? Apg dug.
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From (4.2), (4.3) and (4.13), taking account of (2.3), we get
d T
p*(t)" p*(t)jidvg ()
t=0J M

dt
i . . . 1 .. .
(513) _ / [{ = p* R ap J'* T — 2V V! (p* 1 T TRT) + 5/)* bp*bagw}hij
M

(209" o p* P — e T TPET P RE ) Ay duy.

Further, from (4.2), (4.3), (4.13) and (4.15), taking account of (2.3) and the

Green’s Theorem, we get

(5.14)
4
dt

/Mg(t)le(t)ztg(t)“Cp*(t)tk(V(t)z'J(t)ab)(V(t)jJ(t)sa)J(t)bsdvg(w
t=0
- / [{ — JiUp*vw(vaab)(ijua)Jbu o Jwip*jC(vCJab)(vaua)Jbu
M
1 ) )
— §JC“RUws’kaJSJ (Vida®)(Vedu®) J"
+ Vs Ve (J9 T T (VR (Vo T ) Tp")
. . 1 ..
+ SJCUP*UIC(kaaz)(ch]w)Jwa + §vap*vk(kaab)(chua)Jbugzg
— AV (TP (Ved?) bhig + {70 T 40", P (Vida") (V5 1) I
1 1 > a u jv % @ w
- EJJUJ“”JPSJ‘Z‘RWSC(VZ-Jab)(VjJu )b +2Vi(JJ ", (Vi dy,P)Je )
— 0" (Vido") (VP T — J7°p* (Vi JaP) (VT99) } Apg | .
Similarly, from (4.2), (4.3), (4.14) and (4.15), we get

(5.15)
d

dt

» 7 @00 (T OT0 NV OT0,5) 0070 vy

= A ) {07 (Ve dP) (V) I T = ViV (TR TPV T ) (V0 T, ) T T
— AV (75 (VuJ7) T ) =37 (Vo0 (Vo) Sy T
— 27 (VI TN (Vo ™) TV T + %T*(VCJab)(VuJua)JbUJwgij}hij
+{ = 2J7p" (VT ) (V™) T T — 7 (Ve P) (Y J 1) T
— T (VPI) (VT ) T + 2V (75 (Ve JP) TP T) } Apg | dug.
Thus, from (5.11), (5.12), (5.13), (5.14) and (5.15), we have

(5.16) /M{T’ijhij + ST A, vy = 0,



where

(5.17)
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T = JPpt (Vo JuP) (VI Ju®) T + T p (Vo Jo) (Vi Ju®) T

and

(5.18)

) ) 1 ) )

+ AV, (JpE (Ve JTM) + §J°”Rw;ﬂ“fﬁf(vdJab)(chu“)Jb”

— Vo Ve(JU T T(VE I (Vadu®) Jp)

— 37 N (Vg Ja ) (Ve 7% T
1 1 L ,

_ §vap;d(vdjab)(chua)Jbugzj _ §p*z] (chab)(vuJUa)JbUqu
1 o L

+ §vlvk(ﬂ“ﬂl(chab)(vqu‘l)JvaC“) + 2V (7 (V J7¢)J™)
3 . ) ) )

+ 57_* (VCJjb)(vqul)JbUJCu + T* (v]Jab)(vqua)Jb’UJZ’u.

_ 1
47’

+AVLV (i ST = o7 piag + 277 p"

*(VCJab)(VuJUa)Jvacugij + 2p7kRkabiJlanj
* 7ia 77b 1 *\2 17
— 2V Vo (T T JJ)+§(T)g],

L ijJiqup(vijab)(vjjua)[]bu
+ %Jj”JinpCJqdRUwcd(ViJab)(VjJu“)Jb“
—2Vi(J7 s (VTP ) T0) + p T (Vo) (VP T ) T
+ T s (VidlP ) (V%) + TP i (Ve ) (Vi dy ) T T
7 (VTP ) (V™) T 4 Lt (V2L (V9,) "
— V(77 (Ve ) I T) — AT pjy p**P
+ 205, JIC TP T RE oy — 47 TP,

We define T' = (T;;) and S = (S;;) by

(5.19)
and

(5.20)

N Y .
Tij = gmgijab, where TY = §(T’ (N b ),

Sij = GipgiqSPY, where SP1 = —(S""1_5"7")

1
2

respectively. Then, the integral equation (5.16) is rewritten as

(5.21)

/M{Tijhij + 5P Apgydvg = 0.
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Lemma 3 ([2]). Let B = (B%) be a symmetric (0,2)-tensor field on M. Then
/ ZBijDijdvg =0
M

for all symmetric J-skew-invariant (0,2)-tensor field D if and only if B = (B;;)
= (gmgijab) is J-invariant.

Now, let M = (M, g,J) be any compact almost Hermitian surface and con-
sider any Type (1)-deformation of (g, .J). Then, from (5.21), taking account of
Lemma 3, we see that the tensor field 7" is J-invariant. Similarly, considering
any Type (2) or Type (3)-deformation of (g, J), from (4.17) and (5.21), we have

1 .. 1 .. -
/M(§TUJZ'QAGJ‘ + 5T ;% Aai + 5 Aij)dug

1 . 1. ) g
(5.22) = / (FTV0a" = 51707 + §7) Ayydv,
M

_ / (~T%J,7 + §9)Ay;dvy =0
M
for any 2-form A = (A;;) on M. Thus, from (5.22), we have
(5.23) T;; + Si = 0.
Therefore, summing up the above arguments, we have the following:

Theorem 4. Let M = (M, g,J) be a compact almost Hermitian surface and
T= (T;;), S= (Si;) be the symmetric (0,2)-tensor field and the skew-symmetric
(0,2)-tensor field defined by (5.19) with (5.17) and (5.20) with (5.18), respec-
tively. Then, T;; = T;;, T;;+ Si; = 0 and hence, Si; = S35 hold on any compact
almost Hermitian surface M.

Remark 2. Taking use of the equalities (5.4) and (5.5), it seems principally
possible to rewrite the identities obtained in Theorem 1 in terms of the cur-
vature tensor R, the almost complex structure J, the Lee-form 6 and their
covariant derivatives. It seems worthwhile to write down their explicit forms
in view of their applications. In the present paper, we shall discuss this for a
Kahler surface in the following section.

6. An application

In this section, we provide an application of Theorem 4. Let M = (M, J, g)
be a Kahler surface. Then, it is well-known that M satisfies the following
identity:

(6.1) Rijr = Rijap Ju"J1".
From (6.1), we see easily that the curvature identity (5.7) is trivial. Thus, it is
natural to ask the following related to the Question B:

Question C. Do there exist curvature identities besides (6.1)?
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Concerning Question C, we shall prove the following theorem.

Theorem 5. Let M = (M, g,J) be a compact Kihler surface. Then, in addi-
tion to the identity (6.1), the identity

2
-

B )g9ij =0

(6.2) 20i%pja — TPij — %(|p|2 _

holds on M.

Proof. Since M is Kéhler, from (5.17), taking account of (6.1), we obtain
Tilj = QPIksz’jz' — 2,V VT + 2J;°V Vot

1
(6.3) —|pl* Tji + 27pi5 + 57050
2

-
= 20" Rygi; + |p*Jij + 2755 — >

Jij.
Similarly, from (5.18), we get
Sty = —4Ji;p" pri + 20" Rygiy + drps;
= 4p;" pai + kale[ij +47p;;-
From (6.4), we see that S’ = (S;) is skew-symmetric and J-invariant and
hence, we have

(6.4)

Sij = S
= 4p;®pia + 20" Rygy; + 47py;.
On the other hand, from (6.3), we have

(6.5)

2

-
(6.6) Ty = 20" Ryaiz = |0l gi5 + 273 + =59

Then, from (6.6), we see that 7" = (1};) is symmetric and J-invariant, and
hence we have
Tij = Ti/j
(6.7) 2
= 20" Ryiz — 935 + 27pi5 + 5 i
Thus, from Theorem 4, (6.5) and (6.7), we have
0=Ti;+ 5
(6.8)

2
.
= |p[Ji; — 5 Jig = 27pi5 + 4piap;".
There, from (6.8), we have finally
2 7

pI"gi5 — 5 9ii +27pij — Apiap;” =0,
and hence
2

a 1 T
(6.9) 2piap;" — TPij — §|P|2gz‘j + 9 =0
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Thus, completes the proof of Theorem 5. (|

We here recall the following curvature identity on any 4-dimensional Rie-
mannian manifold (M, g) [3]:

7_2

i’ a a 1
(6-10) Rapei R — 2pi® pja — 2p*" Riavj + Tpij — (Z|R|2 — ol + 1

)gij =0.
Thus, from Theorem 5 and (6.10), we have the following.

Corollary 6. Let M = (M,qg,J) be a compact Kdihler surface. Then, in
addition to the identity (6.1), the identity

. . 1
(6.11) Rapei R — 20" Riqpj — Z(|R|2 —2[p|*)gi; =0
holds on M.

As we discussed in the introduction, the curvature identity that holds on any
compact Riemannian manifold can be extended to any Riemannian manifold.
Similarly we wonder if a curvature identity (derived from the first Chern num-
ber) that holds on any compact almost Hermitian manifold can be extended to
any almost Hermitian manifold. Thus we raise the following question:

Question D. Do the identities in Theorem 4 hold without compactness as-
sumption?
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