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THE CHARACTERISTIC CONNECTION ON
6-DIMENSIONAL ALMOST HERMITIAN MANIFOLDS

Hwajeong Kim*

Abstract. The characteristic connection is a good substitute for
the Levi-Civita connection, especially in studying non-integrable
geometries. Unfortunately, not every geometric structure has the
characteristic connection. In this paper we consider the space U(3)/
(U(1)×U(1)×U(1)) with an almost Hermitian structure and prove
that it has a geometric structure admitting the characteristic con-
nection.

1. Introduction

Recently, the non-integrable geometries are studied by many math-
ematicians and we refer to the papers ([3], [4], [5], [7]) for more inter-
esting information. A very important tool in studying non-integrable
geometries is the characteristic connection ([5]). Given a G-structure,
if the holonomy group with respect to the Levi-Civita connection is the
whole group SO(n), the geometric structure is not preserved by the Levi-
Civita connection. In some situation it is known that there can exist a
unique metric connection with skew symmetric torsion which preserves
the geometric structure. We call this the characteristic connection. The
characteristic connection and its torsion are very closely related to the
string theory in theoretic physics (see [6]).

Many geometric things related to the characteristic connection are
also being studied. For example, in paper [2], the Dirac operator with
respect to the characteristic connection was studied.
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In [5], studying and defining the non-integrable geometries reason-
ably, the author found a condition for G-structures admitting the char-
acteristic connection. Specially in almost hermitian 6-dimensional man-
ifolds corresponding to a U(3)-structure inside SO(6), the condition can
be more comfortable by the consequences of the Gray-Hervella classifi-
cation for the characteristic connections ([1]).

In this paper, we consider the homogeneous space U(3)/(U(1) ×
U(1)×U(1)) which is well known for admitting the nearly kähler struc-
ture. Moreover, we take a metric family on the space and Hermitian
structures from those metrics. Then we investigate which metrics admit
a characteristic connection.

In section 2, we have a look at the definition and the properties of
the characteristic connection. We are interested in the situations in
which a characteristic connection exists, specially in almost Hermitian
manifolds.

In section 3, for the homogeneous space U(3)/(U(1)× U(1)× U(1))
we calculate the structures which allow a characteristic connection.

In appendix, we summerize some important results on non-integrable
geometries related to the characteristic connection.

I would like thank the geometry group at Humboldt University Berlin
for many discussions on this theme.

2. Characteristic connections

2.1. G-structures on Riemannian manifolds

Let G ⊂ SO(n) be a closed subgroup and decompose so(n) = g⊕m.
Denote the projections onto g and m by prg and prm, respectively. For
an oriented Riemannian manifold (Mn, g) we denote its frame bundle by
F(Mn). By definition, a G-structure on Mn is a reduction R ⊂ F(Mn)
of the frame bundle to the subgroup G.

For a given G-structure a characteristic connection is a metric con-
nection with skew-symmetric torsion preserving the structure. Not every
G-structure admits a characteristic connection, but if it exists it will be
unique and can be expressed in terms of the geometric data. Hence we
call it the characteristic connection. In Appendix, we can see some more
details about the characteristic connection concerning non-integrable ge-
ometries. For further details we refer to [6].
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2.2. The characteristic connections on almost Hermitian man-
ifolds

An almost Hermitian manifold (M2n, g, J) is a manifold with a Rie-
mannian metric g and a g-compatible almost complex structure J :
TM2n → TM2n.

By Ω(X, Y ) := g(JX, Y ) X, Y ∈ TM2n we define the Kähler form
of (M2n, g, J). And a (2, 1)-tensor field N called the Nijenhuis tensor is
defined by

N(X, Y ) := [JX, JY ]− J [X,JY ]− J [JX, Y ]− [X, Y ].

By the (3, 0)-tensor N we mean

N(X, Y, Z) = g(N(X, Y ), Z), for X, Y, Z ∈ TM2n.

We now restrict our attention to the 6-dimensional case which is of
special interest among all the even dimensional cases. Let’s consider a 6-
dimensional almost Hermitian manifold (M6, g, J) with a U(3)-structure
in SO(6).

Given a G-structure on a Riemannian manifold, the question about
the existence of the characteristic connection is answered in [6] (see
also the Appendix of this paper). Specially in the almost Hermitian
6-dimensional case it can be answered more practically studying the
Gray-Hervella classifications of almost Hermitian manifolds. We will
not go into details about the classification, just refer to [1]. Now we
introduce a condition for the existence of the characteristic connection
in 6-dimensional case.

Theorem 2.1. ([1] Theorem 4.2) A 6-dimensional almost Hermitian
manifold (M6, g, J) admits a characteristic connection if and only if its
Nijenhuis tensor N is totally skew-symmetric.

The Nijenhuis tensor N as (2, 1)-tensor field is already skew-symmetric
from the definition (see Lemma 3.2), so the N as (3, 0)-tensor is totally
skew-symmetric if

N(X, Y, Z) = −N(X, Z, Y ), for X, Y, Z ∈ TM2n.

3. The existence of the characteristic connection

3.1. The homogeneous space U(3)/(U(1)× U(1)× U(1))

We begin with noting a well-known metric family for a homogeneous
reductive space without proofs:
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Proposition 3.1. Let M = G/H be the homogeneous space and β a
metric of g, the Lie algebra of G. For m := h⊥, g = m⊕ h is a reductive
decomposition. Furthermore, if m = m1 ⊕m2 with relations

[h,m1] = m1, [m1, m1] ⊂ h⊕m2,

[h, m2] ⊂ m2, [m2, m2] ⊂ h, [m1,m2] ⊂ m1,

an Ad (H)-invariant inner product on m is defined by

βt := β|m1×m1 + 2tβ|m2×m2 , for each t > 0

which induces a left invariant metric gt on G/H.

We now take G := U(3) and H := U(1)×U(1)×U(1) ⊂ G diagonally
embedded. Then M := G/H is a 6-dimensional manifold with

g = u(3) = {A ∈ M3(C) : A+Āt = 0}, h = {A ∈ u(3) : A is diagonal}.
We define an Ad (G)-invariant inner product β := −Re(trAB)/2 for
A,B ∈ u(3) and decompose m = h⊥ into

m1 : =








0 a b
−ā 0 0
−b̄ 0 0


 : a, b ∈ C



 ,

m2 : =








0 0 0
0 0 c
0 −c̄ 0


 : c ∈ C



 .

Then we can check that this decomposition satisfies the properties of
Proposition 3.1 and we have well defined metrics gt, t > 0.

We use the following notations for basis: Let Dkl = (dij) be the n×n
matrix with zero entries except that its (k, l)-entry is 1. Furthermore,
let Ekl := Dkl −Dlk for k 6= l and Skl := i(Dkl + Dlk). Then

{e1 := E12, e2 := S12, e3 := E13, e4 := S13,

e5 :=
1√
2t

E23, e6 :=
1√
2t

S23}
is an orthonormal basis of m with respect to βt. As basis for h we

take Hk = Skk/2, k = 1, 2, 3.

Lemma 3.1. (i) The isotropy representation Ad : H → SO(6) for
h = diag(eit, eis, eir) (t, s, r ∈ R) is given by

Ad (h) =




C(t− s) 0 0
0 C(t− r) 0
0 0 C(s− r)


 ,
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where C(x) :=
[

cosx − sinx
sinx cosx

]
.

(ii) The three 2 forms e1 ∧ e2, e3 ∧ e4, e5 ∧ e6 are invariant under the
isotropy representation given in (i).

Proof. (i) By calculation

Ad (h)e1 = hE12h
−1

=




eit 0 0
0 eis 0
0 0 eir







0 1 0
−1 0 0
0 0 0







e−it 0 0
0 e−is 0
0 0 e−ir




=




0 ei(t−s) 0
−ei(s−t) 0 0

0 0 0




= cos(t− s)




0 1 0
−1 0 0
0 0 0


 + sin(t− s)




0 i 0
i 0 0
0 0 0




= cos(t− s)e1 + sin(t− s)e2,

and

Ad (h)e2 = hS12h
−1

=




eit 0 0
0 eis 0
0 0 eir







0 i 0
i 0 0
0 0 0







e−it 0 0
0 e−is 0
0 0 e−ir




=




0 iei(t−s) 0
iei(s−t) 0 0

0 0 0




= − sin(t− s)




0 1 0
−1 0 0
0 0 0


 + cos(t− s)




0 i 0
i 0 0
0 0 0




= − sin(t− s)e1 + cos(t− s)e2.

Analogously

Ad (h)e3 = cos(t− r)e3 + sin(t− r)e4,

Ad (h)e4 = − sin(t− r)e3 + cos(t− r)e4,

and

Ad (h)e5 = cos(s− r)e5 + sin(s− r)e6,

Ad (h)e6 = − sin(s− r)e5 + cos(s− r)e6.
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(ii) From (i)

Ad (h)(e1 ∧ e2) = Ad (h)e1 ∧Ad (h)e2

= (cos(t− s)e1 + sin(t− s)e2

∧(− sin(t− s)e1 + cos(t− s)e2)
= e1 ∧ e2.

The calculations for e3 ∧ e4 and e5 ∧ e6 are similar to the above.

3.2. The existence of the characteristic connection

We first consider the N -tensor, N(X,Y ) = [JX, JY ] − J [X, JY ] −
J [JX, Y ] − [X, Y ], then we have the following lemma concerning the
N -tensor.

Lemma 3.2. The Nijeunhuis tensor N satisfies

1. N(X,Y ) = −N(Y, X),
2. N(X,JY ) = −JN(X, Y ) = N(JX, Y ).

Proof. 1. Since the commutators are skew-symmetric, we have

N(X, Y ) = [JX, JY ]− J [X,JY ]− J [JX, Y ]− [X,Y ] = −N(Y, X).

2. We calculate

N(X, JY ) = [JX, JJY ]− J [X, JJY ]− J [JX, JY ]− [X,JY ]
= [JX,−Y ]− J [X,−Y ]− J [JX, JY ]− [X,JY ]
= −[JX, Y ] + J [X, Y ]− J [JX, JY ]− [X,JY ]
= −J (−J [JX, Y ]− [X, Y ] + [JX, JY ]− J [X, JY ])
= −JN(X, Y ),

and
N(JX, Y ) = −N(Y, JX) = JN(Y, X) = −JN(X, Y ).

By Lemma 3.1, a 2-form and J on G/H are well defined as follows:
We take a 2-form

Ω(X, Y ) := e12 − e34 + e56 =: βt(JX, Y ) with J2 = −Id.

Then by calculation,

J(e1) = e2, J(e2) = −e1, J(e3) = −e4,

J(e4) = e3, J(e5) = e6, J(e6) = −e5.
(3.1)

Now we are ready to give the main theorem.
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Theorem 3.1. On M = U(3)/U(1) × U(1) × U(1) we consider a
metric family gt and an almost complex structure J as above. Then the
characteristic connection exists only for t = 1

2 .

Proof. For X ∈ TM2n, Lemma 3.2 implies

N(X, JX) = −JN(X,X) = 0,

so by (3.1) we have

N(e1, e2) = N(e3, e4) = N(e5, e6) = 0.

Now we consider

N(e1, e3) = [Je1, Je3]− J [e1, Je3]− J [Je1, e3]− [e1, e3]
= −[e2, e4] + J [e1, e4]− J [e2, e3]− [e1, e3],

N(e1, e5) = [Je1, Je5]− J [e1, Je5]− J [Je1, e5]− [e1, e5]
= [e2, e6]− J [e1, e6]− J [e2, e5]− [e1, e5],

N(e3, e5) = [Je3, Je5]− J [e3, Je5]− J [Je3, e5]− [e3, e5]
= −[e4, e6]− J [e3, e6] + J [e4, e5]− [e3, e5].

Computing the commutators, for example with the computer, we have:

[e2, e4] = [e1, e3] = −
√

2te5 and [e1, e4] = −[e2, e3] = −
√

2te6,

[e1, e5] = −[e2, e6] =
1√
2t

e3 and [e1, e6] = [e2, e5] =
1√
2t

e4,

[e4, e6] = [e3, e5] = − 1√
2t

e1 and − [e3, e6] = [e4, e5] = − 1√
2t

e2.

By (3.1), Lemma 3.2, we obtain

N(e1, e3) = −JN(e1, e4) = N(e2, e4) = JN(e2, e3) = 4
√

2te5,

N(e1, e5) = JN(e1, e6) = −N(e2, e6) = JN(e2, e5) =
−4√
2t

e3,

N(e3, e5) = JN(e3, e6) = N(e4, e6) = −JN(e4, e5) =
4√
2t

e1.

And

N(e1, e4) = N(e2, e3) = −4
√

2te6,

N(e1, e6) = N(e2, e5) = − 4√
2t

e4,

N(e3, e6) = N(e4, e5) =
4√
2t

e2.
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We compute

N(e1, e3, e5) + N(e1, e5, e3) = 0.

After the similar calculations for another indices we observe that N is
totally skew-symmetric if and only if

4
√

2t− 4√
2t

= 0.

Hence, the characteristic connection exists only for t = 1
2 .

4. Appendix

Given G-structure defined by some tensor T, it has been customary
that the integrability is defined by ∇gT = 0. Here we present another
approach to non-integrable geometries from the theory of principal fibre
bundles, following the main lines of [5]. We also define the characteristic
connection and give a condition for manifolds in which the characteristic
connection exists.

Consider a manifold M with a G-structure. Let R is the restriction
of the frame bundle F(M) to the subgroup G ⊂ SO(n). The Levi-
Civita connection is a 1-form Z on F(M) with values in the Lie algebra
so(n). Restricting the Levi-Civita connection to R, we decompose it
with respect to so(n) = g⊕m, i.e.

Z|T (R) := Z∗ ⊕ Γ.

So, Z∗ is a connection in the principle G-bundle R and Γ is a 1-form on
M with values in the associated bundle R×G m.

If Γ vanishes, the G-structure R is called integrable, because this
means it is preserved by the Levi-Civita connection and the holonomy
group with respect to the Levi-Civita connection is a subgroup of G. All
G-structures with Γ 6= 0 are called non-integrable.

The difference Γ between the Levi-Civita connection and the canoni-
cal G-connection induced on the G-structure is a good measure for how
much the given G-structure fails to be integrable. By now Γ is widely
known as the intrinsic torsion of the G-structure.

We may then ask under which conditions a given G-structure admits a
metric connection with skew-symmetric torsion preserving the structure.
For any orthonormal basis ei of m consider the G-equivariant map

Θ : Λ3(Rn) → Rn ⊗m, Θ(T ) :=
∑

i

(ei T )⊗ ei
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Theorem 4.1. ([5]) A G-structure of a Riemannian manifold admits
a metric connection with a skew-symmetric torsion if and only if the
1-form Γ belongs to the image of Θ,

2Γ = −Θ(T ) for some T ∈ Λ3(Rn).

Definition 4.2. ([5]) A metric G-connection with the torsion de-
scribed as in Theorem 4.1 will be called a characteristic connection.
By constructiion, the holonomy group with respect to the characteristic
connection is a subgroup of G.
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