• Title/Summary/Keyword: agro-waste

Search Result 48, Processing Time 0.023 seconds

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Solution to promote the Circular Economy in Agriculture in Vietnam for Sustainable Development

  • Thi Huyen Tran;Hoang Tuan Nguyen;Quoc Cuong Nguyen
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.276-283
    • /
    • 2024
  • Currently, the overall tendency for green and sustainable economic development is creating a circular economy. In actuality, agricultural output is currently benefiting greatly from the growth of the circular economy. The creation of a circular economy helps address resource scarcity, save the environment, combat climate change, and increase economic efficiency. Vietnam's economy can grow quickly and sustainably by shifting to a circular economy production model. Comparing prior growth techniques to the digital age and implementing circular economic development connected with high technology will be a fantastic opportunity to boost growth efficiency. In actuality, Vietnam currently has a large number of agricultural circular economy models. These are models: Creating and using gas from waste and wastewater in livestock and farming; model combining cultivation, livestock, and aquaculture; agro-forestry model; garden-forest model; Circular model using agricultural by-products as a catalyst or creating other valuable products; model of moderation, linked to reducing the use of growth hormones, veterinary medications, pesticides, and artificial fertilizers in agriculture and animal husbandry. Unfortunately, there have been few studies and applications of the aforementioned models, which has made it difficult to build the agricultural sector sustainably. In this paper, we outline the current situation and propose solutions to develop a circular economy model in agriculture in Vietnam for sustainable development.

The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources (유기성 폐자원별 메탄 생산 퍼텐셜 측정 연구)

  • Kim, Seung-Hwan;Kim, Hyun-Cheol;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.356-362
    • /
    • 2010
  • This research studied the bio-methane potential of several waste biomass materials as alternative sources for biogas production, and the laboratory procedure for measuring the biochemical methane potential was described. The wastes from four agro-industries (sewage, livestock, food wastewater treatment sludge and cattle rumen substance generating in slaughter house) were evaluated as substrates for the assay of biochemical methane potential. In order to estimate the ultimate methane yield, two empirical equations (modified Gompertz equation and exponential equation) was investigated. The ultimate methane yield of sewage, livestock, food sludge and lumen substance estimated by the modified Gompertz equation were 0.086, 0.147, 0.146, and 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$, respectively. The ultimate methane yield estimated by the exponential equation were 0.109, 0.246 and 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$ in sewage, livestock sludge and lumen substance. And the ultimate methane yield estimated by the exponential equation showed more high values in the range of 26.7 ~67.3% than the ultimate methane yield estimated by the modified Gompertz equation.

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Evaluation of a Rapid Immunochromatography Technique for Determination of Cd in Soils and Rice Grains (면역크로마토그래피를 이용한 토양 및 쌀의 Cd 간이진단법 평가)

  • Lee, Sang-Phil;Kim, Rog-Young;Abe, Kaoru;Kim, Sung-Chul;Kim, Won-Il;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.900-903
    • /
    • 2012
  • Cadmium is known to be very toxic to human health and can be relative easily translocated from soils in plants. Therefore, a rapid method for screening Cd in soils and crops has become more and more important. For this reason, we examined a rapid immunochromatograpy (ICG) test kit which uses antigen-antibody reaction based on immunoassay and chromatography. Soils and rice grains collected from mine waste-contaminated sites were determined for their Cd contents using this kit. For comparison purposes, 0.1 M HCl and ICP-OES were employed as a conventional extraction and determination method. Cadmium contents in rice grains determined using ICG technique were $0.46{\sim}2.39mg\;kg^{-1}$ and Cd contents determined using 0.1 M HCl and ICP-OES were $0.52{\sim}1.97mg\;kg^{-1}$. The correlation between these two Cd contents were statistically significant ($r^2$=0.930). The results of Cd contents in soils also showed a statistically significant relationship between these two methods ($r^2$=0.975). On the basis of these results, ICG technique can be applied to rapidly quantify Cd in crops and soils. However, further research is necessary to apply ICG technique for the field screening.

Statistical Optimization of Medium Components for Milk-Clotting Enzyme Production by Bacillus amyloliquefaciens D4 Using Wheat Bran-an Agro-Industry Waste

  • Zhang, Weibing;He, Xiaoling;Liu, Hongna;Guo, Huiyuan;Ren, Fazheng;Gao, Weidong;Wen, Pengcheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1084-1091
    • /
    • 2013
  • In this paper, two statistical methods were applied to optimize medium components to improve the production of the milk-clotting enzyme by Bacillus amyloliquefaciens D4. First, wheat bran juice, skim milk powder, and $Na_2HPO_4$ were shown to have significant effects on D4 enzyme production using the Plackett-Burman experimental design. Subsequently, an optimal medium was obtained using the Box-Behnken method, which consisted of 3.31 g/l of skim milk powder, 5.0 g/l of sucrose, 0.1 g/l of $FeSO_4{\cdot}7H_2O$, 0.1 g/l of $MgSO_4{\cdot}7H_2O$, 0.1 g/l of $MnSO_4{\cdot}2H_2O$, 0.1 g/l of $ZnSO_4{\cdot}7H_2O$, 1.52 g/l of $Na_2HPO_4$, and 172.45 g/l of wheat bran juice. With this optimal medium, the milk-clotting enzyme production was remarkably enhanced. The milk-clotting enzyme activity reached 3,326.7 SU/ml after incubation of 48 h, which was 1.76-fold higher than that of the basic medium, showing that the Plackett-Burman design and Box-Behnken response surface method are effective to optimize medium components, and B. amyloliquefaciens D4 possessed a high rennet-producing capacity in the optimal medium.

In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels

  • Diab, Kawthar AE
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3559-3567
    • /
    • 2016
  • Background: In recent years, there has been considerable research on recycling of agro-industrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents. Objective: The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels. Materials and Methods: Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1-diphenyl-2-picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL-60 cells and mouse splenocytes by CCK-8 assay. In addition, genotoxic/antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay. Results: Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% ($EC_{50}=42.97{\mu}g\;extract/mL$), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity ($IC_{50}=77.8{\mu}g/mL$) against HL-60 cells, whereas grapefruit and lemon peels were ineffective anti-leukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (T-lymphocytes). Citrus extracts exerted non-cytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h. Conclusions: The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.