The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources

유기성 폐자원별 메탄 생산 퍼텐셜 측정 연구

  • Received : 2010.05.26
  • Accepted : 2010.06.14
  • Published : 2010.06.30

Abstract

This research studied the bio-methane potential of several waste biomass materials as alternative sources for biogas production, and the laboratory procedure for measuring the biochemical methane potential was described. The wastes from four agro-industries (sewage, livestock, food wastewater treatment sludge and cattle rumen substance generating in slaughter house) were evaluated as substrates for the assay of biochemical methane potential. In order to estimate the ultimate methane yield, two empirical equations (modified Gompertz equation and exponential equation) was investigated. The ultimate methane yield of sewage, livestock, food sludge and lumen substance estimated by the modified Gompertz equation were 0.086, 0.147, 0.146, and 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$, respectively. The ultimate methane yield estimated by the exponential equation were 0.109, 0.246 and 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$ in sewage, livestock sludge and lumen substance. And the ultimate methane yield estimated by the exponential equation showed more high values in the range of 26.7 ~67.3% than the ultimate methane yield estimated by the modified Gompertz equation.

본 연구는 안성시 관내에서 발생하는 폐기물계 바이오매스 중 가축분뇨, 하수, 음식물 슬러지와 도축장에서 발생하는 소 반추위 잔재물을 실험에 공시하고 각 폐자원별 메탄생산퍼텐셜을 측정하였다. 또한 기존 연구자들이 메탄생산퍼텐셜을 측정 자료로부터 최대메탄생산량을 추정하는데 이용한 Modified Gompertz model과 Exponential model을 이용하여 최대메탄생산량을 추정에 있어 모델별 적용성을 비교 검토하고자 하였다. 하수, 가축분뇨, 음식물 슬러지 및 반추위 잔재물에서 TS 함량은 각각 18.1, 23.7, 13.6, 14.8%이었으며, VS 함량은 14.3, 18.9, 11.9, 12.5%이었다. 유기성 폐자원별로 혐기배양 전후 pH는 7.93~8.32의 범위에서 7.09~7.25로 약간 낮아졌으며, 배양기간 중 VS 분해율은 37.8, 8.3, 12.5, 56.4%이었다. Modified Gompertz model을 이용하여 구한 단위메탄생산량은 하수, 가축분뇨, 음식물, 반추위 잔재물에서 각각 0.086, 0.147, 0.146, 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$이었으며, Exponential model을 이용하여 구한 단위메탄생산량은 하수, 가축분뇨, 반추위 잔재물에서 0.109, 0.246, 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$로 Modified Gompertz model을 이용하여 추정한 단위메탄생산량과 비교하여 26.7 ~67.3% 정도 높게 추산되었다.

Keywords

References

  1. 교육과학기술부, 행정안전부, 농림수산식품부, 지식경제부, 환경부, 국토해양부, 산림청, 2009.7, 저탄소에너지 생산보급을 위한 폐자원 및 바이오 매스에너지 대책 실행계획.
  2. Angelidaki, I., M. Alves, D. Bolzonella, L Borzacconi, J.L. Campos, A.J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J.B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops : a proposed protocol for batch assays. Water science & technology-WST. 59:927-934. https://doi.org/10.2166/wst.2009.040
  3. APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed.
  4. Banks, C.J. and Z. Wang. 1999. Development of a two phase anaerobic digester for the treatment of mixed abattoir wastes. Water sci. Technol. 40:67-76.
  5. Banks, C.J. 1994. Anaerobic digestion of solid and high nitrogen content fractions of slaughterhouse wastes. Environmentally responsible food processing, AIChE Symp. 90:48-55.
  6. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method ofr measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci. 40:401-407.
  7. Cho, H. S. and J.Y. Kim. 2006. Methane production potential changes of household waste composition. Korea society of waste management. 23: 154-160.
  8. Choi, C.H., E.S. Lee, P.G. Hwang, Y.S. Ju, and S.J . Jin. 2005. A study on the fennen tation process in the production of organic acids fonn food wastes. J. korea society of waste management. 22:79-85.
  9. Chynoweth. D.P., C.E. Turick, J.M, Owens, D.E. Jer, and M.W. Peck. 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass and bioenergy. 5:95-111. https://doi.org/10.1016/0961-9534(93)90010-2
  10. Daniel, R.S. and J.M. Tiedjc. 1984. General method for detennining anaerobic biodegradation potential. Applied and environmental microbiology. 47:850-857.
  11. Eom, T.K. and D.Y. Han. 2004. Effect of loading rate on acidogenic fennentation of domestic waste sludge. Journal of the Korean society of water and wastewater. 18:15-21.
  12. Hansen, T.L. J.E. Schmidt, I. Angelidaki, E. Marca, J. Cour Jansen, H. Mosbak. and T.H. Christensen. 2004. Method for detennination of methane potentials of solid organic easte. Waste Management. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  13. Hashimoto, A.G. 1986. Pretreatment of wheat of straw for fermentation to methane. Biotechnology and Bioengineering. 28:247-255. https://doi.org/10.1002/bit.260280215
  14. Heo, N.H., S.C. Park, J.S. Lee, and H. Kang. 2003. Anaerobic co-digestion of food waste and easte activated sludge : Effect of the mixture ratio of food easte on solubilization and biodegradability of mixture. J. of KSEE. 25: 1050.1058.
  15. Knol, W., M.M. van der Most, and J. de Waart. 1978. Be Waan. Biogas production by anaerobic digestion of fruit and vegetable waste. J. Sci. Fd. Agric. 29:822-830. https://doi.org/10.1002/jsfa.2740290913
  16. Lay, J.J., Y.Y. Li, and T. Noike. 1998. Development of bacterial population and Methanogenic activity in a laboratory-scale landfill bioreactor. Water Res. 32: 3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  17. Lee, B.H., M.K. Lee, J.S. Lee, and H.K. Choi. 2000. Municipal wastewater treatment characteristics of AOAS using food wastes fermentation supernatant as an external carbon source. J. of KTSWT. 8:75-83.
  18. Lim, S.I., S.J. Kang, J.R. Kim, and B.H. Lee. 2002 A study on the characteristics of acid forming process according to the mixing rate of food waste and primary sludge. J. of KSEE. 24:957-965.
  19. Mata-Alvarez, A., E.J . Cecchi, P. Pavan, and P. Llabres. 1990. The performance of digesters treating the organic frac tion of municipal solid wastes differently sorted. Biological wastes. 33:181- 199. https://doi.org/10.1016/0269-7483(90)90004-C
  20. Gunaseeian, V.N. 2003. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and bioenergy. 26:389-399.
  21. Owen, W.F., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. Carty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water research. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  22. Park, J.W., l B. Kim, and W.S. Ra. 2002. Effect of pretreatment method and mixing ratio of food waste and sewage sludge on treatment efficiency in anaerobic digestion. J. korea society of waste management. 19: 874-882.
  23. Park, S.K., B.G. Kim, l.S. Seo, and S. I. Lee. 2001. Fermentation of food waste and utilization as external carbon source in nitrogen and phosphorus removal process. Journal of Korean Society on water quality 17:261-271.
  24. Pauss, A., E.J . Nyns, and H. Naveau. 1984. Production of methane by anaerobic digestion of domestic refuse. EEC Conferene on anaerobic and carbohydrate hydrolysis of waste. Luxembourg:8-10.
  25. Sorensen, A.H,. M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Micro bioI. biotechnol. 34:823-827.
  26. Stewart, D.J., M.J. Bogue, and D.M. Badger. 1984. Biogas production fonn crops and organic wastes. 2. Results of continuous digestion tests. New Zealand J. Sci. 27:285-294.
  27. Tang, S.X.. G.O. Tayo, Z.H. Sun, L.X. Shen, C.S. Zhou, W.J. Xiao, G. P. Ren, X.F. Han, and S.B. Shen. 2008. Effects of yeast culture and fibrolytic enzyme supplementation on invitro fermentation characteristics of low-quality cereal straws. J Anim. sci. 86: 1164-1172.
  28. Williams, A., M. Amat-Marco, and M.D.Coliins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
  29. Yoon, Y.M., C.H. Kim, Y.J. Kim, and H.T. Park, 2009a. The economical evaluation of biogas production facility of pig waste, Korean Journal of Agricultural Management and policy 36:137-157.
  30. Yoon, Y.M. , Y.J . Kim, and C.H. Kim, 2009b. The evaluation of economical efficiency to composting and liquefying process of biomasS discharged in pig breeding, Agriculture economics 31 :39-62.