Browse > Article
http://dx.doi.org/10.4014/jmb.1101.01005

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation  

Rajkumar, Renganathan (Centre for Advanced Studies in Botany, University of Madras Guindy Campus)
Ranishree, Jayappriyan Kothilmozhian (Centre for Advanced Studies in Botany, University of Madras Guindy Campus)
Ramasamy, Rengasamy (Centre for Advanced Studies in Botany, University of Madras Guindy Campus)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 627-636 More about this Journal
Abstract
A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.
Keywords
Protease; 16S rRNA gene sequence; Bacillus sp.; RRM1; agro-residues; SSF;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Adreas, K. G., I. Annette, L. R. C. Pinto, and M. G. F. Denise. 1999. Lipase production by Penicillium restricum in solid state fermentation using Babassu oil cake as substrate. Process Biochem. 35: 85-90.   DOI
2 Marchesi, J. R., T. Sato, J. W. Andrew, T. A. Martin, J. C. Fry, S. J. Hiom, and W. G. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.
3 Murthy, M. V. R., E. V. S. Mohan, and A. K. Sadhukhan. 1999. Cyclosporin A production by Tolypocladium inatum using solid state fermentation. Process Biochem. 34: 269-280.   DOI   ScienceOn
4 Musa, N. and S. W. Wei. 2008. Bacteria attached on culture seaweed Gracilaria changii at Mengabang Telipot, Terengganu. Acad. J. Plant Sci. 1: 01-04.
5 Nilegaonkar, S. S., P. P. Kanekar, S. S. Sarnaik, and M. S. Kelkar. 2002. Production, isolation and characterization of extracellular protease of an alkaliphilic strain of Arthrobacter ramosus, MCM B-351 isolated from the alkaline lake of Lonar, India. World J. Microbiol. Biotechnol. 18: 785-789.   DOI   ScienceOn
6 Pandey, A., C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocess. Biochem. Eng. J. 6: 153-162.   DOI   ScienceOn
7 Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husks-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454.   DOI   ScienceOn
8 Ramakrishnan, N. 1999. Nitrogen fixing bacteria associated with marine brown algae. Doctoral Thesis. University of Madras, India.
9 Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
10 Sana, B., D. Ghosh, M. Saha, and J. Mukherjee. 2006. Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem. 41: 208-215.   DOI   ScienceOn
11 Sellami-Kamoun, A., A. Haddar, N. El-Hadj Ali, B. Ghorbel- Frikha, S. Kanoun, and M. Nasri. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299- 306.   DOI   ScienceOn
12 Seneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt (Eds.). 1986. Bergey's Manual of Systematic Bacteriology, 9th Ed. Williams and Wilkins, Baltimore.
13 Gessesse, A. 1997. The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR- 009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61.   DOI
14 Glaser, V. 2000. Steady growth for industrial enzyme market. Genetic Eng. News 20: 8-36.
15 Jiang, R., S. Huang, T. A. Chow, and J. Yang. 2009. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater. 164: 432-441.   DOI
16 Greene, R. V. 1994. Challenges from the sea: Marine shipworms and their symbiotic bacterium. Soc. Ind. Microbiol. News 44: 51-59.
17 Greene, R. V., M. A. Cotta, and H. L. Grifn. 1989. A novel, symbiotic bacterium isolated from marine shipworm secretes proteolytic activity. Curr. Microbiol. 19: 353-356.   DOI   ScienceOn
18 Hesseltine, C. W. 1972. Solid state fermentation. Biotechnol. Bioeng. 14: 517-532.   DOI   ScienceOn
19 Johnvesly, B., B. R. Manjunath, and G. R. Naik. 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresour. Technol. 82: 61-64.   DOI   ScienceOn
20 Kanekar, P. P., S. S. Nilegaonkar, S. S. Sarnaik, and A. S. Kelkar. 2002. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresour. Technol. 85: 87-93.   DOI   ScienceOn
21 Kaur, S., R. M. Vohra, M. Kapoor, Q. K. Beg, and G. S. Hoondal. 2001. Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J. Microbiol. Biotechnol. 17: 125-129.   DOI
22 Kim, S., Y. Kim, and I. Rhee. 2001. Purification and characterization of a novel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175: 458-461.   DOI   ScienceOn
23 Kota, K. P. and P. Sridhar. 1999. Solid state cultivation of Streptomyces clavuligerus for cephamycin C production. Process Biochem. 34: 325-328.   DOI   ScienceOn
24 Kumar, C. G. and H. Takagi. 1999. Microbial alkaline proteases: From a bio industrial viewpoint. Biotechnol. Adv. 17: 561-594.   DOI   ScienceOn
25 Lonsane, B. K., N. P. Ghilgyal, S. Budiatnan, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7: 258-265.   DOI   ScienceOn
26 Beg, Q. K., R. K. Saxena, and R. Gupta. 2002. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem. 37: 1103-1109.   DOI   ScienceOn
27 Aikat, K. and B. C. Bhattacharyya. 2000. Protease extraction in solid-state fermentation of wheat bran by a local strain of Rhizopus oryzae and growth studies by the soft gel technique. Process Biochem. 35: 907-914.   DOI   ScienceOn
28 Annapurna, R. A., N. K. Chandrababu, N. Samivelu, C. Rose, and N. M. Rao. 1996. Eco-friendly enzymatic dehairing using extracellular protease from Bacillus species isolate. J. Am. Leath. Chem. Assoc. 91: 115-119.
29 Battan, B., J. Sharma, and R. C. Kuhad. 2006. High level xylanase production by alkaliphlic Bacillus pumilus ASH under solid state fermentation. World J. Microbiol. Biotechnol. 22: 1281-1287.   DOI   ScienceOn
30 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
31 Chakraborty, R. and M. J. Srinivasan. 1993. Production of a thermo stable alkaline protease by a new Pseudomonas sp. by solid-substrate fermentation. J. Microbiol. Technol. 8: 7-16.
32 Chellappan, S., C. Jasmin, S. M. Basheer, K. K. Elyas, S. G. Bhat, and M. Chandrasekaran. 2006. Production, purification and partial characterization of a novel protease from marine Engyodontium album BTMFS10 under solid state fermentation. Process Biochem. 41: 956-961.   DOI   ScienceOn
33 Chen, X. G., O. Stabnikova, J. H. Tay, J. Y. Wang, and S. T. L. Tay. 2004. Thermo active extra cellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8: 489-498.   DOI   ScienceOn
34 Doddapaneni, K. K., R. Tatineni, R. N. Vellanki, B. Gandu, N. R. Panyala, B. Chakali, and L.N. Mangamoori. 2007. Purification and characterization of two novel extracellular proteases from Serratia rubidaea. Process Biochem. 42: 1229-1236.   DOI   ScienceOn
35 Donaghy, J. A. and A. M. McKay. 1993. Production and properties of an alkaline protease by Aureobasidium pullulans. J. Appl. Bacteriol. 74: 662-666.   DOI
36 Zandrazil, F. and H. Brunert. 1981. Investigation of physical parameters important for solid state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11: 183-188.   DOI   ScienceOn
37 Frikha, B., A. Kamoun, and M. Nasri. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol. 32: 513-518.   DOI   ScienceOn
38 Uyar, F. and Z. Baysal. 2004. Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid-state fermentation. Process Biochem. 39: 1893-1898.   DOI   ScienceOn
39 Vanderberghe, L. P. S., C. R. Soccol, A. Pandey, and J. M. Lebeault. 2000. Citric acid production by Aspergillus niger in solid state fermentation. Bioresour. Technol. 74: 175-178.   DOI   ScienceOn