• Title/Summary/Keyword: agricultural pests

Search Result 419, Processing Time 0.025 seconds

Effects of microorganism density and mushroom yields according to the sterilization of casing soils at the cultivation of button mushrooms (복토살균 조건에 따른 양송이 재배과정별 복토내 미생물 밀도 및 수량 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Jhune, Chang-Sung;Cheong, Jong-Chun;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • This study was conducted to set the proper sterilization standards of casing soil for the stable production of button mushroom(Agaricus bisporus) from mushroom disease that occurs in infection of casing soil material. Changes of aerobic bacteria are increased as the longer grow-out period and sharply increased after second flushes. Fluorescence Psuedomonas showed high density at high sterilization temperature and $100^{\circ}C$ treatment has extremely high density at 30 min and 60 min in casing 22 days. Density of thermophilic actinomyces is sharply increase from casing with soil and the highest density at 22 days of casing and rapidly decrease after first flushes. Sterilizing temperature of casing soil affects quality and quantity of button mushroom. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min at $100^{\circ}C$ produced the highest mushroom yields, especially mushrooms yields of A grads were the highest at treatment of 90 min at $80^{\circ}C$. Treatment of 60min at $100^{\circ}C$ products many yields, however, this treatment has low economic feasibility for its yields. Sterilizing temperature of casing soil has an effect on generating diseases and insect pests. Treatment of 60 min, 90 min at $80^{\circ}C$ and 30 min $100^{\circ}C$ showed lower incidence than the other treatment. Although treatment of 30 min at $100^{\circ}C$ causes low diseases and mushroom fly damage, it has low mushroom yields. Furthermore, although treatment of 60 min at $100^{\circ}C$ has high mushroom yields, it causes high diseases and mushroom fly damage. Therefore the best conditions for the sterilization of casing soils was 60 min and 90 min at $80^{\circ}C$.

Safety Assesment of Pesticides Treated on Garlic to Control Black Rot during the Storage (마늘 저장 중 부패병 방제를 위하여 처리한 농약의 경시적 농약 잔류량 평가)

  • You, Oh-Jong;Jin, Yong-Duk;Hwang, Se-Gu;Lee, Yong-Hoon;Ihm, Yang-Bin;Kim, Jin-Bae;Kwon, Oh-Kyung;Kyung, Kee-Sung;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.3
    • /
    • pp.148-158
    • /
    • 2009
  • We tested and selected some agrochemicals reducing the occurrence of major pests and diseases during garlic storage. Tebuconazole, diphenylamine and prochloraz as fungicides and dimethate as a insecticide were sprayed or drenched before harvest. And the harvested garlic was dipped in each of the agrochemicals. The residues of pesticides in garlic bulbs treated were analyzed every month from harvesting time for 6 months. In case of Danyang garlic, which was treated with pesticides before and after harvesting, the residues of diphenylamine, tebuconazole, prochloraz, and dimethoate ranged from 0.008 to 0.28, from 0.03 to 0.32, from 0.02 to 0.12, and from 0.02 to 0.25 mg/kg, respectively. In case of Uiseong garlic, the residues of diphenylamine, tebuconazole, prochloraz and dimethoate ranged from 0.008 to 0.09, from 0.08 to 0.45, from 0.02 to 0.57, and from 0.04 to 0.38 mg/kg, respectively. And, in case of Namdo garlic, the residues of diphenylamine, tebuconazole, prochloraz, and dimethoate ranged from 0.008 to 0.52, from 0.07 to 1.67, from 0.02 to 0.17, and from 0.03 to 0.73 mg/kg, respectively. Some of the garlic samples treated with tebuconazole exceeded its maximum residue limits (MRLs) of 0.1 mg/kg set by Korea Food Drug Administration (KFDA), but dimethoate was detected below its MRL of 1.0 mg/kg. In case of diphenylamine and prochloraz, their MRLs for garlic were not set. Adapting their MRLs, 5.0 mg/kg of diphenylamine for apple and pear and 0.5 mg/kg of prochloraz for strawberry and grape, residue levels of diphenylamine and procloraz were below than their MRLs, with the exception of samples two times treated with procloraz in Namdo garlic. These results indicate that dimethoate can be used as an agrochemical to control the postharvest disease in garlic in only MRL aspect.

Studies on the Morphology and Biology of a Parasitic Mite, Pyemotes tritici L.-F. & M. on the Cigarette Beetle(Lasioderma serricorne F.). (Pyemotes tritici L.-F. & M. 궐련벌레살이주머니응애의 형태(形態)와 생활사(生活史)에 관(關)한 연구(硏究))

  • Oh, M.H.;Kim, S.S.;Boo, K.S.
    • Korean journal of applied entomology
    • /
    • v.24 no.1 s.62
    • /
    • pp.15-18
    • /
    • 1985
  • Studies were made on the morphology and life cycle of the mite, Pyemotes tritici $Lagr{\acute{e}}z$-Fossot & $Montagn{\acute{e}}$ (Trombidiformes; Pyemotidea) ,parasitic on larvae of cigarette beetle, Lasioderma serricorne F., which is one of the most serious pests of stored tobacco, cigar, and cigarette in Korea. One generation time was $20.9{\pm}0.7$ days out of which $9.5{\pm}0.3$ days were spent for feeding and $10.3{\pm}0.8$ days for reproduction of progenies. A female of this insect-parasitic mite produced $56.7{\pm}6.9$ progenies during her reproduction period. The body size of a newly-laid male or female was $280{\mu}m$ long and $85{\mu}m$ wide. As female of this mite sucked on, their abdomen grew larger and larger to reach $825{\mu}m$ in width and $0.346mm^3$ in volume after $9{\sim}10$ days. By sucking the humor of a host, the abdomen of a female mite became almost a global shape in two days. The increase rate of abdominal width was the biggest on the second or the third day of feeding while the volume of abdomen reached to the largest on $6{\sim}8$ days after feeding. The largest number of the daily young produced on 4-th day after a female began to reproduce.

  • PDF

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.

Field Application Techniques of Simultaneous Mating Disruptor Against Grapholita molesta and G. dimorpha (복숭아순나방과 복숭아순나방붙이에 대한 동시 교미교란제의 현장 적용 기술)

  • Cho, Jum-Rae;Park, Chang-Gyu;Park, Il-Kweon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.209-220
    • /
    • 2018
  • Mating disruption (MD) has been widely used to effectively control Grapholita molesta in apple orchards. A simultaneous mating disruption (SMD) techniques have been developed to control both G. molesta and G. dimorpha. This study was performed to determine the practical parameters to apply the SMD technique to field conditions. To determine the application amount of SMD lures, a dispenser containing 10 mg pheromone was placed at different numbers of trees in an orchard. Application at every other tree (= one dispenser per two trees) was relatively safe to expect effective MD efficiency in both wax and polyethylene (PE) formulations. One time application at the end of March was enough to maintain a year round MD efficacy against both species. A fence treatment using food trap was applied to prevent any immigratory mated females from nearby untreated regions. To enhance the food trap by adding host-derived secondary compounds, terpinyl acetate (TA) was screened to be effective to attract females of Grapholita molesta among six compounds contained in apple fruit extracts. Among different TA concentrations, 0.05% TA treatment was the most effective to attract the adults. A mixture of TA and sugar was effective to attract and kill females and called FAKT (female attract-to-kill techniques). FAKT was treated at approximately 6 m interval at the edge of the apple orchards. The females trapped by the FAKT included mated females possessing vitellogenic oocytes. SMD supplemented with FAKT maintained the high MD efficacy and significantly suppressed leaf damage induced by the two insect pests compared to control or single SMD treatment.

Pre-Harvest Residual Characteristics of Boscalid and Pyraclostrobin in Paprika at Different Seasons and Plant Parts (파프리카 재배 중 살균제 boscalid와 pyraclostrobin의 사용시기에 따른 작물 부위별 생산단계 잔류특성)

  • Cho, Kyu-Song;Lee, So-Jung;Lee, Dong-Yeol;Kim, Yeong-Jin;Choe, Won-Jo;Lee, Je-Bong;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.269-277
    • /
    • 2011
  • Recent outbreak of new diseases and pests which were introduced from abroad, seriously hampered both quality and safety of paprika fruits. This study has been carried out to aid an establishment of guideline for safe use of pesticides and reduction of their residues on paprika. Systemic fungicides boscalid and pyraclostrobin of either mixed (a.i.; 13.6+6.8%) or single (a.i.; 47 and 18.8%, respectively) water dispersible granule formulation(WG) products were sprayed with recommended or double dosage on paprika grown in green house at March and June. To draw pre-harvest residue limit, residues of each fungicide were analyzed from fruits collected eight times from 18 to 1 day pre-harvest. The biological half-lives of both boscalid and pyraclostrobin in mixed formulation in March and June were slightly shorter than those of single formulation which ranged from 14.4 to 20.1 days. Residue levels of both fungicides of single formulation in fruits in June were about one lower compared to those in March. However, application of double dosage frequently exceeded MRLs from fruits grown both seasons. These results showed that residue levels on fruits persisted longer period of time, more than two weeks, and so the case applied in winter season. The dissipation of fungicides on leaves and fruits was compared. The distribution of both fungicides in leaves was 20-200 times higher than that of fruits and persisted up to 18 days of pre-harvest period at the concentration of 10-40 ${\mu}g\;g^{-1}$. This study indicated that the mixed formulation product exhibited low residues in fruits, but high and long enough to pathogen growth in leaves.

An aspect of quarantine insect pest occurrence with different management system in sweet persimmon orchard (단감원의 방제 체계에 따른 검역대상 해충 발생 양상)

  • Lee, Dong-Woon;Park, Jae-Wan;Park, Chung-Gyoo;Choo, Ho-Yul;Kim, Young-Sub
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.3
    • /
    • pp.228-237
    • /
    • 2003
  • Temporary control schedules were tested at sweet persimmon orchards to development new control programs to meet the quarantine repuirements of America in 2001 and 2002. The 'MRL-type control orchards' were sprayed with chemicals which were possibly adaptable to the pome trees in America. A control schedule consisted of those chemicals registered for persimmon in Korea was incorporated in the 'domestic-type control orchards'. The efficacy of these two control type against insect pests was compared with that of a conventional control schedule. In 2001, MRL orchard and domestic orchard were sprayed 7 and 6 times, and two conventional orchards were 6 and 9 times, respectively. In 2002, acaricide was added once to the MRL orchards at late September to reduce the density of mites on harvested fruits. However no insecticide to plant bug control could be applied to the MRL orchards, because no insecticide against bugs was registered for pome trees in America. This resulted in 7 times of applications in MRL and domestic orchards. The conventional orchard was sprayed 9 times. Only the occurrence of the peach pyralid moth, Dichocrocis puntiferalis (PPM) out of 4 quarantine inset species was observed. The PPM was observed during growing season in MRL, domestic, and conventional orchards. However no fruits damaged by PPM larvae were observed after mid October and after harvest. In 2002 only 1 fruit out of 1,350 fruits inspected in June was damaged by the larvae of PPM at MRL orchards. A fungus-feeding mites and collembolan were under calyx of vested fruits. In 2001 they were found on 45.3% of harvested fruits at MRL orchard. However the percentage of fruits with mites in 2002 was greatly reduced to 3.5% at MRL orchard, presumably because of a added application of acaricide at late September. However percentage of fruits damage by hemipteran bugs at harvesting time was quite high 11.3 % at MRL orchards, because no application of insecticide against plant bugs.

A New Early Maturing Blackish Purple Pigmented Glutinous Rice Variety, 'Josaengheugchal' (조생 흑자색 찰벼 품종 '조생흑찰')

  • Song, You-Chun;Lee, Jeom-Sig;Ha, Woon-Goo;Hwang, Hung-Goo;Lim, Sang-Jong;Yeo, Un-Sang;Park, No-Bong;Kwak, Do-Yeon;Jang, Jae-Ki;Lee, Jong-Hee;Park, Dong-Soo;Jung, Kuk-Hyun;Jeong, Eung-Ki;Nam, Min-Hee;Kim, Young-Doo;Kim, Myeong-Ki;Kwon, Oh-Kyung;Oh, Byeong-Geun
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.262-266
    • /
    • 2010
  • 'Josaengheugchal', a new blackish purple pigmented glutinous japonica rice cultivar, was developed by the rice breeding team of Department of Functional Crop, NICS, RDA in 2004. This cultivar was derived from a cross between 'Tohoku 149' as black glutinous source and 'Sx 864' as purple colored rice in 1992 and 1993 winter season, and selected by pedigree breeding method until $F_6$ generation. As a result, a promising line, YR15907-6-8-1-5, was advanced and designated as the name of 'Milyang 194' in 2001. The local adaptability test of 'Milyang 194' was carried out at seven locations from 2002 to 2004 and it was named as 'Josaengheugchal'. 'Josaengheugchal' is an early maturing cultivar and has 71 cm culm height. It has higher anthocyanian content compared with 'Heugnambyeo'. It is moderately resistant to leaf blast but susceptible to other disease and insect pests. The yield potential of 'Josaengheugchal' in brown rice was about 4.21 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to the plain paddy field of middle, Honam, and Yeomgnam in Korea under ordinary and double cropping system.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF