• 제목/요약/키워드: advanced high strength steels

검색결과 105건 처리시간 0.031초

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

자동차용 고강도 냉연강판의 개발 및 적용현황 (Developments and applications of high strength cold rolled steel sheets for automobiles)

  • 김성주;진광근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.45-52
    • /
    • 2004
  • Continuing pressure for the weight reduction of vehicles and improvement of collision safety is driving the development of new high strength steel with excellent formability. The formable high strength steels which have excellent drawability have been developed and applied to the complicated inner panels. Although BH steel have mainly occupied the material market for outer panels, it is challenged by DP steel which have low yield strength and good bake hardenability. The advanced high strength steel, TRIP steels and DP steels which have excellent formability are new alternatives to conventional HSLA steel for structural parts such as members and pillars. HSLA steels also have been used for automotive bumper reinforcements due to their high yield ratio. Higher grade complex phase steel(CP) were developed for bumper reinforcements by addition of precipitation hardening to transformation strengthened steel. The usage of the advanced high strength steel ale increasing and will become the main material in structural parts near future. This paper describes the features of newly developed high strength cold rolled steels for automobiles.

  • PDF

Al 도금 HPF 강판과 전기아연도금 TRIP 강판의 저항 점 용접 시 연속타점 전극의 수명에 미치는 도금층의 영향 (Effect of Coating Layer on Electrode Life for Resistance Spot Welding of Al-Coated Hpf and Zn-Coated Trip Steels)

  • 손종우;서종덕;김동철;박영도
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.29-36
    • /
    • 2012
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. During the each resistance welding process the electrodes tip reacts with coating layer, then subsequently deteriorates and shorten electrode life. In this study, the Al-coated HPF (Hot Press Forming) steels and Zn-coated TRIP steels were used to investigate the electrode life for resistance spot welding. Experimental results show that the reactivity of Al-coating on HPF steels to electrode tip surface behaviors different from the conventional Zn-coated high strength steels. The electrode tip diameter and nugget size in electrode life test of Al-coated HPF steels are observed to be constant with respect to weld numbers. For Al-coated HPF steels, the hard aluminum oxide layer being formed during high temperature heat treatment process reduces reactivity with copper electrode during the resistance welding process. Eventually, the electrode life in resistance spot welding of Al-coated HPF steels has the advantage over the galvanized steel sheets.

고 Mn계 TRIP/TWIP 강의 수소취성 거동 (Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels)

  • 정종구;이오연;박영구;김동은;진광근
    • 한국재료학회지
    • /
    • 제18권7호
    • /
    • pp.394-399
    • /
    • 2008
  • The hydrogen embrittlement susceptibility of high strength TRIP/TWIP steels with the tensile strength of 600Mpa to 900Mpa grade was investigated using cathodically hydrogen charged specimens. TWIP steels with full austenite structure show a lower hydrogen content than do TRIP steels. The uniform distribution of strong traps throughout the matrix in the form of austenite is considered beneficial to reduce the hydrogen embrittlement susceptibility of TWIP steels. Moreover, an austenite structure with very fine deformation twins formed during straining could also improve the ductility and reduce notch sensitivity. In Ubend and deep drawing cup tests, TWIP steels show a good resistance to hydrogen embrittlement compared with TRIP steels.

템퍼링 조건이 마르텐사이트계 고강도강의 수소확산거동에 미치는 영향 (Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel)

  • 박진성;황은혜;이만재;김성진
    • Corrosion Science and Technology
    • /
    • 제17권5호
    • /
    • pp.242-248
    • /
    • 2018
  • Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.

자동차용 핫스탬핑 고강도강 판재의 겹치기 레이저용접 (Lap joint Laser Welding of Hot Stamped Ultra High Strength Steel for Automotive Application)

  • 김용;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Recently ultra high strength steels(UHSS) has been widely applied to the structural or safety components in the automotive industry. Specially, hot stamping boron steel 22MnB5 has shown the crash-resistant characteristics when applying to bumpers and pillars. Lap joint Laser welding of the hot stamped and die quenched sheets of Boron steel was carried out using 3kW Nd/YAG laser. The appropriate Lap joint laser welding conditions were founded separately for four lap joint combinations. The lower sheest is a hot stamped sheet in common and the upper sheet is selected among the hot stamped steel and high strength steels such as SPCC, 370MPa, and 590MPa grade high strength steels. Cross bead sections and local hardening and softening were observed as well as tensile-shear test results.

  • PDF

고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향 (Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels)

  • 이정훈;이성학;신상용
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

제어압연한 베이나이트계 고강도강의 인장 및 충격 성질 (Tensile and Charpy Impact Properties of High-Strength Bainitic Steels Fabricated by Controlled Rolling Process)

  • 성효경;신상용;황병철;이창길;김낙준;이성학
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.615-624
    • /
    • 2010
  • This study is concerned with tensile and Charpy impact properties of high-strength bainitic steels fabricated by controlled rolling process. Six kinds of steels were fabricated by varying finish rolling temperature, start cooling temperature, and cooling rate, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron backscatter diffraction analysis. The microstructures of the steels rolled in the single phase region were most similar to those of the steels rolled in the two phase region. The steels cooled from $700{^{\circ}C}$ were composed mainly of granular bainites, while those cooled from $600{^{\circ}C}$ contained a number of bainitic ferrites, which resulted in the decrease in ductility and upper shelf energy in spite of the increase in strength. In the steels cooling from $600^{\circ}C$, fine acicular ferrites were well formed when the cooling rate was slow, which led to the best combination of high ductility, high upper shelf energy, and low energy transition temperature according to the decrease in the overall effective grain size due to the presence of acicular ferrites having smaller effective grain size.

초고장력강과 알루미늄 합금의 접합을 위한 SPR 설계 (Design of self-piercing rivet to joint in advanced high strength steel and aluminium alloy sheets)

  • 김동범;추연근;조해용
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.75-80
    • /
    • 2015
  • Self-piercing riveting is an joining method of advanced high strength steels (AHSS) and other dissimilar materials. It has attracted considerable interest from the automotive industry. The SPR has become an interesting alternative joining technique for difficult to weld materials such as steels and aluminium alloys. In this paper, self-piercing rivet and anvil for SPR were designed for the joining conditions with AHSS and aluminium alloy. Various conditions of SPR were simulated for the design of rivets and anvils. The simulated results were in good agreement with experimental ones. As a result, over HV500 rivet is desirable to joint SPFC780 AHSS and aluminum alloy.

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.