Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.7.394

Hydrogen Embrittlement Behavior of High Mn TRIP/TWIP Steels  

Jung, Jong-Ku (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Lee, Oh-Yeon (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Park, Young-Koo (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.)
Kim, Dong-Eun (HYSCO Technical Research Lab.)
Jin, Kwang-Geun (POSCO Technical Research Lab.)
Publication Information
Korean Journal of Materials Research / v.18, no.7, 2008 , pp. 394-399 More about this Journal
Abstract
The hydrogen embrittlement susceptibility of high strength TRIP/TWIP steels with the tensile strength of 600Mpa to 900Mpa grade was investigated using cathodically hydrogen charged specimens. TWIP steels with full austenite structure show a lower hydrogen content than do TRIP steels. The uniform distribution of strong traps throughout the matrix in the form of austenite is considered beneficial to reduce the hydrogen embrittlement susceptibility of TWIP steels. Moreover, an austenite structure with very fine deformation twins formed during straining could also improve the ductility and reduce notch sensitivity. In Ubend and deep drawing cup tests, TWIP steels show a good resistance to hydrogen embrittlement compared with TRIP steels.
Keywords
hydrogen embrittlement; TRIP steel; TWIP steel; mechanical property;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. P. Hirth, Metall. Trans., 11A, 861 (1980)
2 A. R. Troiano, ASM Trans., 52, 54 (1960)
3 H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng., A176, 191 (1994)   DOI   ScienceOn
4 F. Nakasato and Tetsu-to-Hagane., 88, 20 (2002)
5 I. Maroef, D. L. Olson, M.Eberhart and G.R.Edwards, Int. Mat. Reviews, 47, 191 (2002)   DOI   ScienceOn
6 D. P. Dantovich and S. Floreen, Metall. Trans., 4A, 2627 (1973)   DOI
7 L. W. Tsay, M. Y. Chi, Y. F. Wu, J. K Wu and D. Y. Lin, Corrosion Science, 48, 1926 (2006)   DOI   ScienceOn
8 J. Watanabe, T. Takai, M. Nagumom and Tetsu-to-Hagane., 82, 947 (1996)   DOI
9 A. S. Tetelman, The mechanisms of hydrogen embrittlement in steel, Fundamental Aspects of Stress Corrosion Cracking, p.446, Houston, USA, (1962)
10 A. W. Thompson and I. M. Bernstein, Adv. Corros. Sci. Tech., 7, 53 (1979)
11 T. Tsumura, F. Nakasato, T. Ueda and N. Muri, Sumitomo Met., 40, 19 (1988)
12 N. Bandyopadhyay, J. Kameda and C. J. MeMahon Jr., Metall. Trans., 14A, 881 (1983)
13 F. Nakasato, F. Terasaki and Tetsu-to-Hagane., 61, 856 (1975)   DOI
14 T. Shiraga, N. Ishikawa, M. Ishiguro, E. Yamashita and S. Mizoguchi, CAMP-ISIJ, 7, 1646 (1994)
15 T. Kimura, Y. Kurebayashi and S. Nakamura, CAMP-ISIJ, 7, 1642 (1994)
16 H. Matsumoto, F. Nakasato, N. Kuratomi, T. Kushida and T. Tsumura, CAMP-ISIJ, 7, 1602 (1994)
17 C. E. Price and R. G. Norman, Acta Met., 35, 1639 (1987)   DOI   ScienceOn
18 M. B. Bever, Encyclopedia of Material Science and Eng., 3, 2241 (1986)
19 R. A. McCoy, Development of a high strength Mn steel Resistant to hydrogen embrittlement, Hydrogen in Metals, ASM., p.169, Materials Park, Ohio (1974)
20 Y. Nakai, Y. Uesugi and H. Shimanaka, Kawasaki Tech. Report, 6, 324 (1974)
21 H. Hargi, Y. Hayashi and N. Ohtani, Met. Trans., 20, 329 (1979)
22 W. Y. Choo and J. Y. Lee, Met. Trans., 13A, 135 (1982)
23 A. W. Thompson, Hydrogen in Metals ASM., p.328 Materials Park, Ohio (1974)
24 J. A. Donovan, Metall. Trans., 7A, 145 (1976)
25 N. J. Petch and P. Stables, Nature, 169, 842 (1952)   DOI