Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.5.242

Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel  

Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Hwang, Eun Hye (Department of Advanced Materials Engineering, Sunchon National University)
Lee, Man Jae (Analysis and Assessment Group, Research Institute of Industrial Science and Technology (RIST))
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.17, no.5, 2018 , pp. 242-248 More about this Journal
Abstract
Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.
Keywords
Tempering; ${\varepsilon}$-carbide; Cementite; Hydrogen diffusion; Martensitic high-strength steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. R. Troiano, Trans. ASM., 52, 54 (1960).
2 A. Nagao, K. Hayashi, K. Oi, and S. Mitao, ISIJ. Int., 52, 213 (2012).   DOI
3 JIS Z 3113, Method of Measurement for Hydorgen evolved from Steel Welds, Japan Standards Association (1983).
4 ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
5 J. S. Park, H. J. Lee, and S. J. Kim, Korean J. Mater. Res., 28, 286 (2018).   DOI
6 G. Malakondaiah, M. Srinivas, and P. R. Rao., Progr. Mater. Sci., 42, 209 (1997).   DOI
7 E. H. Hwang, H. G. Seong, and S. J. Kim, Korean J. Met. Mater., 56, 570 (2018).   DOI
8 G. R. Speich, Trans. Metall. Soc. AIME 245, 2553 (1969).
9 S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong, and Y. R. Cho, Int. J. Hydro. Ener., Accepted (2018).
10 G. M. Evans, Welding J., 59-8, 67 (1980).
11 J. L. Gu, K. D. Chang, H. S. Fang, and B. Z. Bal, ISIJ Int., 42, 1560 (2002).   DOI
12 C. D. Beachem, Metal. Trans. A, 3, 307 (1972).   DOI
13 J. Eastman, F. Heubaum, T. Matsumoto, and H. K. Bimbaum, Acta. Metall., 30, 1579 (1982).   DOI
14 E. Serra, A. Perujo, and G. Benamati, J. Nucl. Mater., 245, 108 (1997).   DOI
15 H. K. D. H. Bahadeshia, ISIJ. Int., 56, 24 (2016).   DOI
16 H. Karbasian and A. E. Tekkaya, J. Mater. Process. Tech., 210, 2103 (2010).   DOI
17 S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, and R. Arroyave, Mater. Sci. Eng. A, 725, 57 (2018).   DOI
18 Z. J. Xie, C. J. Shang, X. L. Wang, X. P. Ma, S. V. Subramanian, and R. D. K. Misra, Mater. Sci. Eng. A, 727, 200 (2018).   DOI
19 T. Schaffner, A. Hartmaier, V. Kokotin, and M. Pohl, J. Alloy. Comp., 746, 557 (2018).   DOI
20 S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ. Inter., 52, 316 (2012).   DOI
21 H. J. Kang, J. S. Yoo, J. T. Park, S. T. Ahn, N. Kang, and K. M. Cho, Mater. Sci. Eng. A, 543, 6 (2016).
22 M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, Eng. Fail. Anal., 58, 485 (2015).   DOI
23 J. L. Gu, K. D. Chang, H. S. Fang, and B. Z. Bal, ISIJ. Int., 42, 1560 (2002).   DOI
24 U. R. Evans and C. V. King, J. Electrochem. Soc., 108, 94 (1961).   DOI
25 A. V. Syugaev, N. V. Lyalina, S. F. Lomaeva, and S. M. Reshetnikov, Prot. Met. Phys. Chem. Surf., 48, 429 (2012).
26 J. H. Jang, I. G. Kim, and H. K. D. H. Bhadeshia, Scripta Mater., 63, 121 (2010).   DOI
27 C. Zapffe and C. Sims, Trans. AIME, 145, 225 (1941).
28 D. G. Enos and J. R. Scully, Metall. Mater. Trans. A, 33, 1151 (2002).   DOI
29 G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983).   DOI
30 G. W. Hong and J. Y. Lee, Metall. Trans. A, 14, 156 (1983).   DOI