• Title/Summary/Keyword: advanced fuel cladding

Search Result 77, Processing Time 0.018 seconds

Effect of Final Annealing and Stress on Creep Behavior of HANA Zirconium Fuel Claddings (HANA 지르코늄 핵연료피복관의 크립거동에 미치는 최종 열처리 및 응력의 영향)

  • Kim, H.G.;Kim, J.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.235-241
    • /
    • 2005
  • Thermal creep properties of the advanced zirconium fuel claddings named by HANA alloys which were developed for high burn-up application were evaluated. The creep test of HANA cladding tubes was carried out by the internal pressurization method in temperature range from 350 to $400^{\circ}C$ and in the hoop stress range from 100 to 150 MPa. Creep tests were lasted up to 800 days, which showed the steady-state secondary creep rate. The creep resistance of HANA fuel claddings was affected by final annealing temperature and various factors, such as alloying element, applied stress and testing temperature. From the results the microstructure observation of the samples before and after creep test by using TEM, the dislocation density was increased in the sample of after creep test. The Sn as an alloying element was more effective in the creep resistance than other elements such as Nb, Fe, Cr and Cu due to solute hardening effect of Sn. In case of HANA fuel claddings, the improved creep resistance was obtained by the control of final heat treatment temperature as well as alloying element.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding

  • Bischoff, Jeremy;Delafoy, Christine;Vauglin, Christine;Barberis, Pierre;Roubeyrie, Cedric;Perche, Delphine;Duthoo, Dominique;Schuster, Frederic;Brachet, Jean-Christophe;Schweitzer, Elmar W.;Nimishakavi, Kiran
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • AREVA NP (Courbevoie, Paris, France) is actively developing several enhanced accident-tolerant fuels cladding concepts ranging from near-term evolutionary (Cr-coated zirconium alloy cladding) to long-term revolutionary (SiC/SiC composite cladding) solutions, relying on its worldwide teams and partnerships, with programs and irradiations planned both in Europe and the United States. The most advanced and mature solution is a dense, adherent chromium coating on zirconium alloy cladding, which was initially developed along with the CEA and EDF in the French joint nuclear R&D program. The evaluation of the out-of-pile behavior of the Cr-coated cladding showed excellent results, suggesting enhanced reliability, enhanced operational flexibility, and improved economics in normal operating conditions. For example, because chromium is harder than zirconium, the Cr coating provides the cladding with a significantly improved wear resistance. Furthermore, Cr-coated samples exhibit extremely low corrosion kinetics in autoclave and prevents accelerated corrosion in harsh environments such as in water with 70 ppm Li leading to improved operational flexibility. Finally, AREVA NP has fabricated a physical vapor deposition prototype machine to coat full-length cladding tubes. This machine will be used for the manufacturing of full-length lead test rods in commercial reactors by 2019.

Developing an interface strength technique using the laser shock method

  • James A. Smith;Bradley C. Benefiel;Clark L. Scott
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.432-442
    • /
    • 2023
  • Characterizing the behavior of nuclear reactor plate fuels is vital to the progression of advanced fuel systems. The states of pre- and post-irradiation plates need to be determined effectively and efficiently prior to and following irradiation. Due to the hostile post-irradiation environment, characterization must be completed remotely. Laser-based characterization techniques enable the ability to make robust measurements inside a hot-cell environment. The Laser Shock (LS) technique generates high energy shockwaves that propagate through the plate and mechanically characterizes cladding-cladding interfaces. During an irradiation campaign, two Idaho National Laboratory (INL) fabricated MP-1 plates had a fuel breach in the cladding-cladding interface and trace amounts of fission products were released. The objective of this report is to characterize the cladding-cladding interface strengths in three plates fabricated using different fabrication processes. The goal is to assess the risk in irradiating future developmental and production fuel plates. Prior LS testing has shown weaker and more variability in bond strengths within INL MP-1 reference plates than in commercially produced vendor plates. Three fuel plates fabricated with different fabrication processes will be used to bound the bond strength threshold for plate irradiation insertion and assess the confidence of this threshold value.

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium (Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동)

  • Kim Jun Hwan;Bang Je Geon;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.451-456
    • /
    • 2004
  • Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.

A REVIEW AND INTERPRETATION OF RIA EXPERIMENTS

  • Vitanza, Carlo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.591-602
    • /
    • 2007
  • The results of Reactivity-Initiated Accidents (RIA) experiments have been analysed and the main variables affecting the fuel failure propensity identified. Fuel burn-up aggravates the mechanical loading of the cladding, while corrosion, or better the hydrogen absorbed in the cladding as a consequence of corrosion, may under some conditions make the cladding brittle and more susceptible to failure. Experiments point out that corrosion impairs the fuel resistance for RIA transient occurring at cold conditions, whereas there is no evidence of important embrittlement effects at hot conditions, unless the cladding was degraded by oxide spalling. A fuel failure threshold correlation has been derived and compared with experimental data relevant for BWR and PWR fuel. The correlation can be applied to both cold and hot RIA transients, account taken for the lower ductility at cold conditions and for the different initial enthalpy. It can also be used for non-zero power transients, provided that a term accounting for the start-up power is incorporated. The proposed threshold is easy to use and reproduces the results obtained in the CABRI and NSRR tests in a rather satisfactory manner. The behaviour of advanced PWR alloys and of MOX fuel is discussed in light of the correlation predictions. Finally, a probabilistic approach has been developed in order to account for the small scatter of the failure predictions. This approach completes the RIA failure assessment in that after determining a best estimate failure threshold, a failure probability is inferred based on the spreading of data around the calculated best estimate value.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

HIGH BURNUP FUEL ISSUES

  • Rudling, Peter;Adamson, Ron;Cox, Brian;Garzatolli, Friedrich;Strasser, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • One of the major current challenges to nuclear energy lies in its competitiveness. To stay competitive the industry needs to reduce maintenance and fuel cycle costs, while enhancing safety features. Extended burnup is one of the methods applied to meet these objectives However, there are a number of potential fuel failure causes related to increased burnup, as follows: l) Corrosion of zirconium alloy cladding and the water chemistry parameters that enhance corrosion; 2) Dimensional changes of zirconium alloy components, 3) Stresses that challenge zirconium alloy ductility and the effect of hydrogen (H) pickup and redistribution as it affects ductility, 4) Fuel rod internal pressure, 5) Pellet-cladding interactions (PCI) and 6) pellet-cladding mechanical interactions (PCMI). This paper discusses current and potential failure mechanisms of these failure mechanisms.