Browse > Article
http://dx.doi.org/10.1016/j.net.2017.12.004

AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding  

Bischoff, Jeremy (AREVA NP-Fuel Design)
Delafoy, Christine (AREVA NP-Fuel Design)
Vauglin, Christine (AREVA NP-Fuel Design)
Barberis, Pierre (AREVA NP-Component Research Center)
Roubeyrie, Cedric (AREVA NP-Le Creusot Technical Center)
Perche, Delphine (AREVA NP-Le Creusot Technical Center)
Duthoo, Dominique (AREVA NP-Fuel Manufacturing)
Schuster, Frederic (CEA, DP, Universite Paris-Saclay)
Brachet, Jean-Christophe (CEA, DEN-SRMA, Universite Paris-Saclay)
Schweitzer, Elmar W. (AREVA NP GmbH - Fuel Design)
Nimishakavi, Kiran (AREVA Inc. - Fuel Design)
Publication Information
Nuclear Engineering and Technology / v.50, no.2, 2018 , pp. 223-228 More about this Journal
Abstract
AREVA NP (Courbevoie, Paris, France) is actively developing several enhanced accident-tolerant fuels cladding concepts ranging from near-term evolutionary (Cr-coated zirconium alloy cladding) to long-term revolutionary (SiC/SiC composite cladding) solutions, relying on its worldwide teams and partnerships, with programs and irradiations planned both in Europe and the United States. The most advanced and mature solution is a dense, adherent chromium coating on zirconium alloy cladding, which was initially developed along with the CEA and EDF in the French joint nuclear R&D program. The evaluation of the out-of-pile behavior of the Cr-coated cladding showed excellent results, suggesting enhanced reliability, enhanced operational flexibility, and improved economics in normal operating conditions. For example, because chromium is harder than zirconium, the Cr coating provides the cladding with a significantly improved wear resistance. Furthermore, Cr-coated samples exhibit extremely low corrosion kinetics in autoclave and prevents accelerated corrosion in harsh environments such as in water with 70 ppm Li leading to improved operational flexibility. Finally, AREVA NP has fabricated a physical vapor deposition prototype machine to coat full-length cladding tubes. This machine will be used for the manufacturing of full-length lead test rods in commercial reactors by 2019.
Keywords
Accident-Tolerant Fuels; Cladding; Cr Coating; Physical Vapor Deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (2015a) 531-539.   DOI
2 J.M. Kim, T.H. Ha, I.H. Kim, H.G. Kim, Microstructure and oxidation behavior of CrAl laser-coated Zircaloy-4 alloy, Metals 7 (2) (2017) 59.   DOI
3 J. Bischoff, C. Delafoy, P. Barberis, D. Perche, B. Buerin, J.-C. Brachet, Development of Cr-coated zirconium cladding for enhanced accident tolerance, in: Proceedings of TopFuel Conference 2016, Boise, ID, USA, September 2016.
4 J. Bischoff, K. McCoy, J. Strumpell, J.-C. Brachet, C. Lorrette, Development of fuels with enhanced accident tolerance, in: Proceedings of TopFuel Conference 2015, Zurich, Switzerland, September 2015.
5 J.-C. Brachet, M. Le Saux, M. Le Flem, S. Urvoy, E. Rouesne, T. Guilbert, C. Cobac, F. Lahogue, J. Rousselot, M. Tupin, P. Billaud, C. Hossepied, F. Schuster, F. Lomello, A. Billard, G. Velisa, E. Monsifrot, J. Bischoff, A. Ambard, On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWR fuel, in: Proceedings of TopFuel Conference 2015, Zurich, Switzerland, September 2015.
6 J.-C. Brachet, M. Le Saux, V. Lezaud-Chaillioux, M. Dumerval, Q. Houmaire, F. Lomello, F. Schuster, E. Monsifrot, J. Bischoff, E. Pouillier, Behavior under LOCA Conditions of Enhanced Accident Tolerant Chromium Coated Zircaloy-4 Claddings, in: Proceedings of TopFuel 2016 Conference, Boise, ID, USA, September 2016.
7 S. Bragg-Sitton, Development of advanced accident-tolerant fuels for commercial LWRs, Nucl. News 57 (3) (2014) 83.
8 Lori Braase, "Enhanced Accident Tolerant LWR Fuels, National Metrics Workshop Report", US DOE Advanced Nuclear Fuel Campaign, INL, January 2013. INL/EXT-13-28090, FCRD-FUEL-2013-000087.
9 J.C. Brachet, M. Dumerval, V. Lezaud-Chaillioux, M. Le Saux, E. Rouesne, D. Hamon, S. Urvoy, T. Guilbert, Q. Houmaire, C. Cobac, G. Nony, J. Rousselot, F. Lomello, F. Schuster, H. Palancher, J. Bischoff, E. Pouillier, Behavior of chromium coated M5 claddings under LOCA conditions, in: Proceedings of WRFPM Conference, Jeju, Republic of South Korea, September 2017.
10 I. Idarraga-Trujillo, M. Le Flem, J.C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions, in: Proceedings of 2013 LWR Fuel Performance Meeting/TopFuel, Charlotte, USA, Sept. 15-19, 2013.
11 E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Ceramic coating for corrosion (C3) resistance of nuclear fuel cladding, Surf. Coat. Technol. 281 (2015) 133-143.   DOI
12 E. Hillner, J.N. Chirigos, The Effect of Lithium Hydroxide and Related Solutions on the Corrosion Rate of Zircaloy in 680F Water, WAPD-TM-307, Bettis Atomic Power Laboratory, Pittsburgh, PA, 1962.
13 C. Tang, M. Stuber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident tolerant fuel (ATF) claddings, Corros. Rev. 2017 (2017).
14 K. Daub, R. Van Nieuwenhove, H. Nordin, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater. 467 (2015) 260-270.   DOI
15 E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding, J. Nucl. Mater. 478 (2016) 236-244.   DOI
16 H.G. Kim, J.H. Yang, W.J. Kim, Y.H. Koo, Development status of accident-tolerant fuel for light water reactors in Korea, Nucl. Eng. Technol. 48 (1) (2016) 1-15.   DOI