Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.7.451

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium  

Kim Jun Hwan (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute)
Bang Je Geon (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute)
Jeong Yong Hwan (Zirconium Fuel Cladding Development Team, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.14, no.7, 2004 , pp. 451-456 More about this Journal
Abstract
Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.
Keywords
Creep; Zirconium; Cladding; Niobium; Annealing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Christodoulou, P. A. Turner, C. N. Tome, C. K. Chow and R. J. Klassen, Metal. and Mater. Trans. 33A, 1103 (2002)
2 K. U. Snowden, J. Nucl. Mater. 36, 347 (1970)   DOI   ScienceOn
3 T. Forgeron, J. C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J. P. Mardon and C. Bernaudat, ASTM STP 1354, 256 (2000)
4 M. H. Lee, J. H. Kim, S. Y. Park, J. G. Bang, B. K. Choi, Y. H. Jeong and Y. H. Jung, Proc. of the Korean Nuclear Society Spring Meeting (2004)
5 C. Nam, K. H. Kim, M. H. Lee and Y. H. Jeong, J. Kor. Nucl. Soc. 32, 372 (2000)   과학기술학회마을
6 W. A. McInteer, D. L. Baty and K. O. Stein, ASTM STP 1023, 621 (1989)
7 Metals Handbook, vol. 8, 8th ed, p.285, American Society for Metals, Ohio (1973)
8 C. Nam, B. K. Choi, Y. H. Jeong and Y. H. Jung, Proc. the Korean Nuclear Society Fall Meeting (2002)
9 D. G. Frankline, G. E. Lucas and A. L. Bement, ASTM STP 815 (1983)
10 I. M. Bernstein, Trans. Am. Inst. Met. and Pet. Eng. 239, 1518 (1967)
11 K. H. Kim C. Nam, M. H. Lee, Y. H. Jeong and Y. H, Jung, Proc. the Korean Nuclear Society Fall Meeting (1999)
12 Y. G. Yoon, Y. H. Jeong and B. K. Choi, J. Kor. Inst. Met. & Mater., 39, 8, 864 (2001)
13 J. J. Holmes, J. Nucl. Mater. 13, 2 (1964)   DOI   ScienceOn
14 B. Ranaswami and G. B. Craig, Trans. Am. Inst. of Met. and Pet. Eng. 239, 1226 (1967)
15 G. P. Sabol, G. R. Kilp, M. G. Balfour and E. Roberts, ASTM STP 1023, 227 (1989)
16 J. P. Mardon, D. Charquet and J. Senevat, ASTM STP 1354, 505 (2000)
17 D. B. Knorr and M. R. Notis, J. Nucl. Mater., 56, 18 (1975)   DOI   ScienceOn
18 M. Limback and T. Andersson, ASTM STP 1295, 448 (1996)
19 J. M. Frenkel and M. Weisz, ASTM STP 551, 140 (1974)
20 R. Brenner, J. L. Bechade, O. Castelnau and B. Bacroix, J. Nucl. Mater., 305, 175 (2002)   DOI   ScienceOn