DOI QR코드

DOI QR Code

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun (Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Hong, Jong-Dae (Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hyochan (Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jaeyong (Advanced 3D Printing Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hak-Sung (Department of Mechanical Engineering, Hanyang University)
  • Received : 2021.06.28
  • Accepted : 2021.10.31
  • Published : 2022.05.25

Abstract

As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Keywords

Acknowledgement

This work has been carried out supported by the Korea Foundation of Nuclear Safety R&D Program (2101050-0121-CG100).

References

  1. B. Cheng, Y.-J. Kim, P. Chou, Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding, Nucl. Eng.Technol. 48 (1) (2016) 16-25. https://doi.org/10.1016/j.net.2015.12.003
  2. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-H. Park, J.-H. Yang, Y.-H. Koo, Progress of surface modified Zr cladding development for ATF at KAERI, in: Proceedings of the 2017 Water Reactor Fuel Performance Meeting, Ramada Plaza Jeju, Jeju Island, Korea, 2017, pp. 10-14.
  3. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (1-3) (2014) 420-435. https://doi.org/10.1016/j.jnucmat.2013.06.041
  4. K. Yueh, K.A. Terrani, Silicon carbide composite for light water reactor fuel assembly applications, J. Nucl. Mater. 448 (1-3) (2014) 380-388. https://doi.org/10.1016/j.jnucmat.2013.12.004
  5. Y.-I. Jung, H.-G. Kim, I.-H. Kim, S.-H. Kim, J.-H. Park, D.-J. Park, J.-H. Yang, Y.-H. Koo, Strengthening of Zircaloy-4 using Y2O3 particles by a laser-beam-induced surface treatment process, Mater. Des. 116 (2017) 325-330. https://doi.org/10.1016/j.matdes.2016.12.023
  6. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-Y. Park, Y.-H. Koo, Microstructure and mechanical strength of surface ODS treated Zircaloy-4 sheet using laser beam scanning, Nucl. Eng.Technol. 46 (4) (2014) 521-528. https://doi.org/10.5516/NET.07.2014.027
  7. Y.-I. Jung, D.-J. Park, J.-H. Park, H.-G. Kim, J.-H. Yang, Y.-H. Koo, Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes, Nucl. Eng.Technol. 50 (2) (2018) 218-222. https://doi.org/10.1016/j.net.2017.12.001
  8. D.M. Perez, R. Williamson, S. Novascone, G. Pastore, J. Hales, B. Spencer, Assessment of BISON: A Nuclear Fuel Performance Analysis Code, Idaho National Laboratory, Idaho Falls, 2013.
  9. T. Glantz, T. Taurines, O. De Luze, S. Belon, G. Guillard, F. Jacq, DRACCAR: a multi-physics code for computational analysis of multi-rod ballooning, cool-ability and fuel relocation during LOCA transients Part one: general modeling description, Nucl. Eng. Des. 339 (2018) 269-285. https://doi.org/10.1016/j.nucengdes.2018.06.022
  10. H. Kim, S. Lee, J. Kim, J. Yoon, Development of MERCURY for simulation of multidimensional fuel behavior for LOCA condition, Nucl. Eng. Des. 369 (2020) 110853. https://doi.org/10.1016/j.nucengdes.2020.110853
  11. N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Adv. Eng. Mater. 3 (6) (2001) 357-370. https://doi.org/10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
  12. Z. Wang, M. Song, C. Sun, D. Xiao, Y. He, Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu alloy composites, Mater. Sci. Eng., A 527 (24-25) (2010) 6537-6542. https://doi.org/10.1016/j.msea.2010.07.017
  13. M. Barmouz, P. Asadi, M.B. Givi, M. Taherishargh, Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles' size and volume fraction, Mater. Sci. Eng., A 528 (3) (2011) 1740-1749. https://doi.org/10.1016/j.msea.2010.11.006
  14. N. Chawla, R. Sidhu, V. Ganesh, Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites, Acta Mater. 54 (6) (2006) 1541-1548. https://doi.org/10.1016/j.actamat.2005.11.027
  15. H.J. Bohm, A. Rasool, Effects of particle shape on the thermoelastoplastic behavior of particle reinforced composites, Int. J. Solid Struct. 87 (2016) 90-101. https://doi.org/10.1016/j.ijsolstr.2016.02.028
  16. H. Wang, H. Zhou, R. Peng, L. Mishnaevsky Jr., Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Compos. Sci. Technol. 71 (7) (2011) 980-988. https://doi.org/10.1016/j.compscitech.2011.03.003
  17. S. Ma, X. Zhuang, X. Wang, 3D micromechanical simulation of the mechanical behavior of an in-situ Al3Ti/A356 composite, Compos. B Eng. 176 (2019) 107115. https://doi.org/10.1016/j.compositesb.2019.107115
  18. D. Barbera, H. Chen, Y. Liu, Creep-fatigue behaviour of aluminum alloy-based metal matrix composite, Int. J. Pres. Ves. Pip. 139 (2016) 159-172. https://doi.org/10.1016/j.ijpvp.2016.02.004
  19. D.-H. Kim, J.-D. Hong, H. Kim, J. Kim, H.-S. Kim, H. Guim, Measurement and investigation of mechanical properties of a partial oxide dispersion strengthened Zircaloy-4 tube via an instrumented indentation test, Materials Today Communications 27 (2021) 102210. https://doi.org/10.1016/j.mtcomm.2021.102210
  20. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-H. Park, J.-H. Yang, Y.-H. Koo, Microstructure and mechanical characteristics of surface oxide dispersion-strengthened Zircaloy-4 cladding tube, Additive Manufacturing 22 (2018) 75-85. https://doi.org/10.1016/j.addma.2018.05.002
  21. G. Abaqus, Abaqus 6.11, Dassault Systemes Simulia Corporation, Providence, RI, USA, 2011.
  22. Z. Xia, Y. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solid Struct. 40 (8) (2003) 1907-1921. https://doi.org/10.1016/S0020-7683(03)00024-6
  23. K. Geelhood, W. Luscher, C. Beyer, FRAPCON-4.0: Integral Assessment, 2, Pacific Northwest National Laboratory, 2015.
  24. R.G. Munro, Elastic Moduli Data for Polycrystalline Oxide Ceramics, 2002.
  25. C. Curtis, Properties of yttrium oxide ceramics, J. Am. Ceram. Soc. 40 (8) (1957) 274-278. https://doi.org/10.1111/j.1151-2916.1957.tb12619.x
  26. R.L. Williamson, G. Pastore, S.R. Novascone, B.W. Spencer, J.D. Hales, Modelling of LOCA Tests with the BISON Fuel Performance Code, Idaho National Lab.(INL), Idaho Falls, ID (United States), 2016.
  27. J. Kim, J.W. Yoon, H. Kim, S.-U. Lee, Prediction of Ballooning and Burst for Nuclear Fuel Cladding with Anisotropic Creep Modeling during Loss of Coolant Accident (LOCA), Nuclear Engineering and Technology, 2021.
  28. D. Campello, N. Tardif, M. Moula, M.-C. Baietto, M. Coret, J. Desquines, Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach, Int. J. Solid Struct. 115 (2017) 190-199. https://doi.org/10.1016/j.ijsolstr.2017.03.016
  29. D. Kaddour, S. Frechinet, A. Gourgues, J.-C. Brachet, L. Portier, A. Pineau, Experimental determination of creep properties of zirconium alloys together with phase transformation, Scripta Mater. 51 (6) (2004) 515-519. https://doi.org/10.1016/j.scriptamat.2004.05.046
  30. A.R. Massih, An Evaluation of High-Temperature Creep of Zirconium Alloys: Data versus Models, 2014.
  31. R. Gaboriaud, High-temperature creep of yttrium sesquioxide: Y2O3, philosophical magazine. A, physics of condensed matter, Defects and Mechanical Properties 44 (3) (1981) 561-587.
  32. A. Gallardo-Lopez, A. Dominguez-Rodriguez, C. Estournes, R. Marder, R. Chaim, Plastic deformation of dense nanocrystalline yttrium oxide at elevated temperatures, J. Eur. Ceram. Soc. 32 (12) (2012) 3115-3121. https://doi.org/10.1016/j.jeurceramsoc.2012.04.035
  33. A.P. Mouritz, Introduction to Aerospace Materials, Elsevier2012.
  34. R. Lefever, J. Matsko, Transparent yttrium oxide ceramics, Mater. Res. Bull. 2 (9) (1967) 865-869. https://doi.org/10.1016/0025-5408(67)90096-7
  35. Y. Nigara, Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7 (4) (1968) 404. https://doi.org/10.1143/JJAP.7.404
  36. J. Halpin, S. Tsai, Environmental Factors in Composite Materials Design, US Air Force Technical Report AFML TR, 1967, p. 67423.
  37. P.S. Turner, The Problem of Thermal-Expansion Stresses in Reinforced Plastics, 1942.
  38. D.-H. Kim, G.-H. Choi, H. Kim, C. Lee, S.-U. Lee, J.-D. Hong, H.-S. Kim, Measurement of Zircaloy-4 cladding tube deformation using a three-dimensional digital image correlation system with internal transient heating and pressurization, Nucl. Eng. Des. 363 (2020) 110662. https://doi.org/10.1016/j.nucengdes.2020.110662
  39. D.L. Hagrman, G.A. Reymann, MATPRO-Version 11: A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, Idaho National Engineering Lab., Idaho Falls (USA), 1979.
  40. Y. Lee, J.I. Lee, H.C. No, Mechanical analysis of surface-coated zircaloy cladding, Nucl. Eng.Technol. 49 (5) (2017) 1031-1043. https://doi.org/10.1016/j.net.2017.03.012