• Title/Summary/Keyword: adomian decomposition method

Search Result 30, Processing Time 0.024 seconds

MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Noor, Muhammad Aslam;Noor, Khalida Inayat;Mohyud-Din, Syed Tauseef;Shaikh, Noor Ahmed
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1265-1277
    • /
    • 2009
  • In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

  • PDF

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

APPLICATION OF DOUBLE DECOMPOSITION TO PULSATILE FLOW

  • Mamaloukas, C.;Haldar, K.;Mazumdar, H.P.
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.193-207
    • /
    • 2002
  • The present investigation deals with the pulsatile flow of incompressible viscous fluid through a circular rigid tube provided with constriction. The method applied here is the Decomposition Method, which has been developed by George Adomian [3]. The advantages of this method are the avoidance of simplifications and restrictions, which change the non-linear problem to mathematically tractable one, whose solution is not consistent with physical solution. Theoretically results, such as, wall shear stress and axial velocity component, have been obtained and the graphical solutions of these theoretical results have been shown in the figures.

SOLUTION OF TENTH AND NINTH-ORDER BOUNDARY VALUE PROBLEMS BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • In this paper, we apply homotopy perturbation method (HPM) for solving ninth and tenth-order boundary value problems. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed homotopy perturbation method solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method.

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

SYSTEMATIC APPROXIMATION OF THREE DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.253-266
    • /
    • 2019
  • In this article, a systematic solution based on the sequence of expansion method is planned to solve the time-fractional diffusion equation, time-fractional telegraphic equation and time-fractional wave equation in three dimensions using a current and valid approximate method, namely the ADM, VIM, and the NIM subject to the estimate initial condition. By using these three methods it is likely to find the exact solutions or a nearby approximate solution of fractional partial differential equations. The exactness, efficiency, and convergence of the method are demonstrated through the three numerical examples.

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam;Waheed, Asif
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.605-615
    • /
    • 2009
  • In this paper, we develop a reliable algorithm which is called the variation of parameters method for solving sixth-order boundary value problems. The proposed technique is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any perturbation, discritization, linearization or restrictive assumptions. Moreover, the method is free from the identification of Lagrange multipliers. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested technique.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.

EXISTENCE AND APPROXIMATE SOLUTION FOR THE FRACTIONAL VOLTERRA FREDHOLM INTEGRO-DIFFERENTIAL EQUATION INVOLVING ς-HILFER FRACTIONAL DERIVATIVE

  • Awad T. Alabdala;Alan jalal abdulqader;Saleh S. Redhwan;Tariq A. Aljaaidi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.989-1004
    • /
    • 2023
  • In this paper, we are motivated to evaluate and investigate the necessary conditions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer fractional derivative. The given problem is converted into an equivalent fixed point problem by introducing an operator whose fixed points coincide with the solutions to the problem at hand. The existence and uniqueness results for the given problem are derived by applying Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate the convergence of approximated solutions to the same problem using the modified Adomian decomposition method. An example is provided to illustrate our findings.