• Title/Summary/Keyword: admissible limit

Search Result 15, Processing Time 0.022 seconds

Characterizations of conical limit points for Kleinian groups

  • Hong, Sung-Bok;Jeong, Myung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.253-258
    • /
    • 1996
  • For a nonelementary discrete group $\Gamma$ of hyperbolic isometries acting on $B^m(m\geq2)$, we give a topological characterization of conical limit points using admissible pairs.

  • PDF

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

Finite Element Analysis of the Gangway of a Korea High Speed Train (한국형 고속전철 관절장치의 구조해석)

  • 노규석;이상록;강재윤
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.222-229
    • /
    • 2001
  • This paper aims to verify the static strength of a KHST gangway structure including fixed ring and carrying ring according to tile load cases in the defined specification. The structure has been analyzed by the finite element method. Calculation carried out in tile fields of linearity and small deformation. The admissible limit is tile yield strength for the available materials. The analysis results show that Von-Mises stress at some locations of the structure is a little beyond the admissible limit. These results are successfully reflected on the adjusted design.

  • PDF

LEFSCHETZ FIXED POINT THEORY FOR COMPACT ABSORBING CONTRACTIVE ADMISSIBLE MAPS

  • Cho, Yeol-Je;Q'Regan, Donal;Yan, Baoqiang
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.69-83
    • /
    • 2009
  • New Lefschetz fixed point theorems for compact absorbing contractive admissible maps between Frechet spaces are presented. Also we present new results for condensing maps with a compact attractor. The proof relies on fixed point theory in Banach spaces and viewing a Frechet space as the projective limit of a sequence of Banach spaces.

  • PDF

Deformability Models of Shear Controlled Members (전단지배형 부재의 변형능력 산정을 위한 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.357-360
    • /
    • 2004
  • Estimation of deformation capacity of non-flexural reinforced concrete members is proposed using basic concepts of limit analysis and the virtual work method. This new approach starts with construction of admissible stress field as for an equilibrium set. Failure mechanisms compatible with admissible stress fields are postulated as for displacement set. It is assumed that the ultimate deformations as result of failure mechanisms are controlled by ultimate strain of concrete in compression. The derived formula for deformability of deep beams in shear shows reasonable range of ultimate displacement.

  • PDF

An application of large displacement limit analysis to frame structures

  • Challamel, Noel
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.159-177
    • /
    • 2009
  • The aim of this paper is to give a rigorous framework for the interpretation of limit analysis results including large displacements. The presentation is oriented towards unidimensional media (beams) but two-dimensional (plates) or three-dimensional media are also concerned. A single-degree-of-freedom system is first considered: it shows the basic phenomena of large displacement limit analysis or second-order limit analysis. The results are compared to those of a continuous system and the differences between both systems are discussed. Theoretical results are obtained using the kinematical approach of limit analysis. An admissible load-displacement plane is then defined, according to the yield design theory. The methodology used is applied to frame structures. The presented results are nevertheless different from those already published in the literature, as the virtual displacement field can be distinguished from the displacement field at collapse. The simplicity of large displacement limit analysis makes it attractive for practical engineering applications. The load-displacement upper bound can be used for instance in the optimal design of steel frames in seismic areas.

PROJECTIVE LIMIT OF A SEQUENCE OF BANACH FUNCTION ALGEBRAS AS A FRECHET FUNCTION ALGEBRA

  • Sady. F.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.259-267
    • /
    • 2002
  • Let X be a hemicompact space with ($K_{n}$) as an admissible exhaustion, and for each n $\in$ N, $A_{n}$ a Banach function algebra on $K_{n}$ with respect to $\parallel.\parallel_n$ such that $A_{n+1}\midK_{n}$$\subsetA_n$ and${\parallel}f{\mid}K_n{\parallel}_n{\leq}{\parallel}f{\parallel}_{n+1}$ for all f$\in$$A_{n+1}$, We consider the subalgebra A = { f $\in$ C(X) : $\forall_n\;{\epsilon}\;\mathbb{N}$ of C(X) as a frechet function algebra and give a result related to its spectrum when each $A_{n}$ is natural. We also show that if X is moreover noncompact, then any closed subalgebra of A cannot be topologized as a regular Frechet Q-algebra. As an application, the Lipschitzalgebra of infinitely differentiable functions is considered.d.

Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction (한계해석법에 의한 파일-지반-터널 상호작용 해석)

  • Lee Yong-Joo;Shin Jong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF

A numerical method for the limit analysis of masonry structures

  • Degl'Innocenti, Silvia;Padovani, Cristina
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • The paper presents a numerical method for the limit analysis of structures made of a rigid no-tension material. Firstly, we formulate the constrained minimum problem resulting from the application of the kinematic theorem, which characterizes the collapse multiplier as the minimum of all kinematically admissible multipliers. Subsequently, by using the finite element method, we derive the corresponding discrete minimum problem in which the objective function is linear and the inequality constraints are linear as well as quadratic. The method is then applied to some examples for which the collapse multiplier and a collapse mechanism are explicitly known. Lastly, the solution to the minimum problem calculated via numerical codes for quadratic programming problems, is compared to the exact solution.