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PROJECTIVE LIMIT OF A SEQUENCE
OF BANACH FUNCTION ALGEBRAS
AS A FRECHET FUNCTION ALGEBRA

F. Sapy

ABSTRACT. Let X be a hemicompact space with (K,) as an ad-
missible exhaustion, and for each n € N, A, a Banach function
algebra on K, with respect to || - ||, such that Ap11|k, C An and
I fl&, lln < || flln+1 for all f € Angy. We consider the subalgebra
A={f eC(X): flk, € An,¥n € N} of C(X) as a Fréchet func-
tion algebra and give a result related to its spectrum when each
A,, is natural. We also show that if X is moreover noncompact,
then any closed subalgebra of A cannot be topologized as a regu-
lar Fréchet Q-algebra. As an application, the Lipschitz algebra of
infinitely differentiable functions is considered.

1. Introduction

Let X be a compact Hausdorff space. We denote the algebra of all
continuous functions on X by C(X) and the uniform norm of f € C(X)
by ||fllx. Under a norm, a Banach subalgebra of C'(X), which contains
the constants and separates the points of X, is called a Banach function
algebra on X. The uniform norm of an element in a Banach function
algebra does not exceed from its norm. A Banach function algebra B on
X is called natural if each complex homomorphism on B is an evaluation
homomorphism at some point of X.

By a Fréchet algebra (A, (p,)) we mean a topological algebra A whose
topology can be defined by a sequence (p,) of separating and submul-
tiplicative seminorms, p,(fg) < pn(f)pn(9), f.g € A, and which is
complete with respect to this topology. Without loss of generality we
can assume that p, < p,+; and that p,(1) = 1 if A has unit 1 (see
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260 Sequence of Banach function algebras

[4]). A Fréchet algebra A is called a Q-algebra if the set of quasi-regular
elements of A is open in A. This is equivalent to say that the set of
quasi-regular elements of A has an interior (see [1]).

In this paper, we assume that all algebras are unital.

The spectrum of a commutative Fréchet algebra (A4, (p,)), which is
denoted by M4, is the set of all non-zero continuous complex homomor-
phisms on A, and for each f € A, f: M4 — C is the Gelfand transform
of f. We always endow M4 with the Gelfand topology. The Fréchet
algebra A is called functionally continuous if each complex homomor-
phism on A is continuous. It is unanswered for about 50 years whether or
not each Fréchet algebra is functionally continuous (Michael’s problem).

DEerFINITION 1.1. A Hausdorff space X is called hemicompact if there
exists a sequence (K ) of increasing compact subsets of X such that each
compact subset of X is contained in some K,. The sequence (K,,) with
this property is called an admissible ezhaustion of X.

Let (A, (pn)) be a Fréchet algebra. For each n, let A, be the com-
pletion of A/ker p, with respect to the norm p/ (f + kerp,) = pn(f).
Then A, is a Banach algebra, A = limA,,, projective limit of (A,),
and M4 = UM4,, as sets. Moreover, M, is a hemicompact space with
(M4,,) as an admissible exhaustion and M4, = {¢ € M4 :| ¢(f) |<

pu(f),Yf € A}, n € N (see [4]).

DEFINITION 1.2. Let X be a hemicompact space and A a subalgebra
of C(X) which contains the constants and separates the points of X.
We call A a Fréchet function algebra or F f-algebra on X if it is a
Fréchet algebra with respect to some topology such that the evaluation
homomorphism ¢, at each x € X is continuous, that is, ¢, € Ma4.

We can consider each commutative unital semisimple Fréchet algebra
as an F f-algebra on its spectrum. So indeed the class of F' f-algebras
and the class of commutative unital semisimple Fréchet algebras are the
same.

Now let (A, (pn)) be an F f-algebra on X. Since J : X — My, = +—
¢z, is a continuous injective map, {p, : ¢ € K, } is a compact subset of
M4 for each n € N. So for each n there exists an integer m such that
{ps :x € K,} C M4, . Therefore,

1) Nfllx. = sup lee(HI < sup [0()] = Fllsta,, < Pmlf)
rzeK, wEMa,,

for all f € A.
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For each n € N, let i(n) > n be the smallest integer that ||f||x, <
Pi()(f) holds for all f € A and define p;, on A|k, by

pu(flk,) = inf{p;n)(9) : 9|k, = flk., 9 € A}

for each f € A. Then p!] is an algebra norm on A|g,. Let Ak, be
the completion of A|k, with respect to the norm p!. Then we have the
following result:

THEOREM 1.3 ([6]). Let (4, (p,)) be an F f-algebra on X, (K,,) an
admissible exhaustion of X and (Ak, ) as defined above. Then (A, ) is
a sequence of Banach algebras and A is dense in limAg, . Moreover, if
ker g,, C ker p;(,) for each positive integer n, then A is algebraically and
topologically a projective limit lim A, where q,, is defined by ¢,(f) =

1/ 1l -

THEOREM 1.4 ([6]). Let (A, (p,)) and (B, (q,)) be F f-algebras on
hemicompact spaces X and Y, respectively, and let T : (A, (p,)) —
(B, (gn)) be a continuous monomorphism with a dense range. Then the
injective adjoint spectral map T* : Mg — M4, ¥ — o T, is surjective
and proper, that is, the inverse image of each compact set is compact,
if and only if for each m € N, there exists an integer n such that

1 FlIaa,, < an(T(f))
for all f € A.

2. Main results

Let X be a hemicompact space and (K,,) an admissible exhaustion of
X. In this section, we assume that (A4, ) is a sequence of Banach function
algebras such that for each n € N, A, is a Banach function algebra on
K,, with respect 1 | - [n, Ans1lic, C An and ||l ln < [|fllnss for al
f € Ayq1. Consider

A={feC(X): flk, € An, n€ N}.

Clearly, A contains the constants and for each n € N, p,,(f) = | f|x.. ||,
f € A, defines a submultiplicative seminorm on A. It is easy to check
that A is a Fréchet algebra with respect to the topology defined by the
sequence (p,) of seminorms. Moreover, the evaluation map ¢, at each
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x € X is continuous. So if A separates the points of X, then A is an
F f-algebra on X.

Note that if X is compact and if each A, is inverse closed, that is,
% € A, if f € A, and f(z) # 0 for all z € K,,, then A is a Q-algebra.
This is because A is also inverse closed and there is an integer N such
that K, = X foralln > N. Let G={f € A: 1+ f € A7}, where A™!
is the set of all invertible elements of A. If f € A and py(f) < 1, then
Ifllx < Iflgnllv = pN(f) < 3, since the norm of a Banach function
algebra is greater than the uniform norm. Thus (1 + f)(z) # 0 for all
x € X. Since A is inverse closed, 1 + f € A, that is, f € G. Hence the
open neighborhood V = {f € A : py(f) < 3} of the origin is contained
in G. So G has an interior point.

THEOREM 2.1. Let X be a hemicompact space and let (Ay,|| - ||n)
and (A, (p,)) be as defined above. Suppose that A separates the points
of X and that for each n, A, is natural. If (B,(q,)) is an F f-algebra
on X which contains A as a dense subalgebra and the identity map
I:(A,(pn)) — (B,(gn)) is continuous, then My = Mp as sets.

Proof. Let i(n), p and Ak, be as defined in Theorem 1.3. Here
we notice that i(n) = n and if f,g € A and f|k, = g|k,,, then ||(f —
Nk, lIn = pu(f—g) = 0so that p,(f) = pn(g). This shows that for each
f e Api(flk,) = pa(f) = ||flk,|ln, and so Ak, is indeed the closure
of A|k, in the Banach function algebra (A,, || - ||l»). Therefore, in this
case, each Ag  is a Banach function algebra on K,, and A = limAg,, by
Theorem 1.3.

Since I is a continuous monomorphism with a dense range, I* : Mg —
M4, defined by I*(p) = |4, is an injective continuous map. For each
m € N and each f € A,

1FlMar =T ar, (Flr) = ran (Fln) = [ Fllx.,

where 74, (f|k,,) is the spectral radius of f|k,, in A, and the last
equality is a consequence of the naturality of A,,. On the other hand,
since (B, (gy)) is an F f-algebra on X, for each m € N, there exists an
integer n € N such that

£l < 1 fllaes, <an(f), fE€B,

where B, is the completion of B/ ker g,, with respect to the norm ¢, (f+
ker g,) = g.(f), f € B (see the inequality (1)). So by Theorem 1.4, I*
is surjective and proper. Thus M4 = Mp as sets. (]
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REMARK 1.

(a) In Theorem 2.1, if M4 is a k-space, then the restriction of I i
to each compact subset of M4 is continuous, since I* is a proper
map. So [ *~" is continuous on M 4. Hence M 4 is homeomorphic
to M, B-

(b) The naturality of each A, cannot be omitted in Theorem 2.1.
For example, let X = [0,1], K, = X, 4, = A(E)|[_1’1], where
D is the closed unit disk in C and A(D) is the uniform Banach
algebra of continuous functions on D which are analytic on D.
For each f € A,, there is a unique g € A(D) such that gl-1,1 =
7. Define fll. = llgly. Then 4 = {f € C(X) : flx, €
An} = A(D)|j=1,1), Ma = D, and A is dense in C([-1,1]). But
Meq-11)) = [-1,1].

THEOREM 2.2. Let X be a hemicompact noncompact space with
(K,) as an admissible exhaustion. Let (A,,| - |l») and (A, (p,)) be as
defined in the beginning of this section such that A separates the points
of X. Then any closed subalgebra B of the F f-algebra (A, (p,)) cannot
be normable as a regular Banach algebra.

Proof. Let || - || be a norm on B such that (B, || - ||) is a regular Ba-
nach algebra on Mp. Since B is closed in A, (B, (p,)) is a commutative
semisimple Fréchet algebra. By the Carpenter’s theorem, i.e., each com-
mutative semisimple Fréchet algebra has a unique topology as a Fréchet
algebra, the identity map I : (B, | -||) — (B, (pn)) is a homeomorphism.
So there exist an ng € N and an M > 0 such that

(2) £l <M - pry (f)

holds for all f € B.

Since X is noncompact, one can choose an z € X \ K,,. By the
compactness of K, in X and hence in Mp and by the regularity of B
on Mp, there exists an f € B with f(goz) =1 and f(goy) = 0 for all
Y € Kp,. That is, f(z) = 1 and f|k,, = 0. Thus p,,(f) = 0. Now the
inequality (2) implies that || f|| = 0 and hence f = 0 as an element of B,
which is a contradiction. g

REMARK 2. By the same method as the proof of Theorem 2.2, one
can show that the closed subalgebra B of A cannot be topologized as a
regular Fréchet (J-algebra.
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ExAMPLE 2.3. Let (X,d) be a metric space and 0 < o < 1. The
collection of all complex bounded Lipschitz functions of order o on X
is denoted by Lip(X, ). It is well-known (see [7]) that Lip(X,a) with
respect to pointwise multiplication is a Banach algebra under the norm
|+ lla, defined by

[flla = Ifllx +palf), f€Lip(X,0),
where P (f) = sup,.z, LWL and ||f|x = sup,ex |f(x)].
Now let X be a hemicompact metric space, (K,) an admissible ex-
haustion of X, and 0 < o < 1. Let A, = Lip(K,,a) and

HORNIO

1l =1 £l + sup d*(z,y)

zF#EY

Clearly, Apt1lk, C An and ||flx, lln < || flln+1, f € Antar. So by the
above argument, FLip(X,a) = {f € C(X) : f|k, € Lip(K,,a), n € N}
is an F f-algebra on X with respect to the topology defined by the se-
quence (p,, ) of seminorms, where p, (f) = || |k, ||» for all f € FLip(X, )
and all n € N. Using [7, Proposition 1.4], one can show that FLip(X, &)
is dense in C(X) in the compact-open topology. So by Theorem 2.1,
Mevip(x,e) = Mc(xy = X. Indeed, one can show that the Gelfand
topology on X inherited from MFr,ip(x,q) coincides on the metric topol-

ogy and so Myrip(x,a) = X.

EXAMPLE 2.4. Let 0 < a < 1 and X a perfect compact plane set
which is a finite union of regular sets. The algebra of all functions f on
X which are n-times differentiable and for each k, 0 < k < n, f® €
C(X) (resp. f®) € Lip(X,a)) is denoted by D™(X) (resp. Lip™ (X, a))
and the algebra of all functions f with derivatives of all orders (resp.
f%) e Lip(X, a) Vk € N) is denoted by D*®(X) (resp. Lip™ (X, c)).

It is well-known (see [3, 5]) that for each n € N, D"(X) and Lip™ (X, a)
are natural Banach function algebras on X under the norms, defined by

n (k)
Il =3 Ml
k=0 ’

and

P+ 2a(F)
||fnn:k§_% i ,
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respectively.

Now for each n € N, set K,, = X and A,, = D"(X) (resp. Lip"(X, a)).
Then A = {f € C(X) : flk, € An, n € N} = D®(X) (resp. A =
Lip®(X,a) =NA,,) and (4, (|| - ||»)) is an F f-algebra on X. Moreover,
we have the following inclusions:

Ry(X) C Lip™(X,a) C Lip"(X, ) C D*(X) C D'(X)

and D'(X) C R(X), where Ro(X) is the algebra of all rational functions
with poles off X and R(X) is the uniform closure of Ro(X) (see [3]).
Thus A is dense in R(X), and since each A, is natural, we have M4 =
Mp(xy = X by Theorem 2.1. Indeed, by the compactness of X, M4 is
homeomorphic to X.

REMARK 3.

(a) Notice that the algebra FLip(X, @), defined in Example 2.3, is
not in general a Banach algebra. Indeed, it is a Banach algebra
if and only if X is compact.

(b) In Example 2.4, the algebras Lip>™(X,a) and D>(X) are Q-
algebras, since each A, is inverse closed. Moreover, there is
no topology which make these algebras Banach algebras, since
f — f' defines a nontrivial derivation.

Now let (A,) and (A, (pn)) be as defined before such that A is an
F f-algebra on X. Set b(A) = {f € A :supp,(f) < ¢} and || f|lec =
sup p(f) for each f € b(A). Then it is not difficult to check that (b(A), ||
o) is a Banach algebra. For instance, if A = FLip(X,a), then b(A) =
Lip(X, o) and || ]| is the Banach algebra norm on Lip(X, &), which was
defined earlier, and if A = Lip™ (X, a) then b(A) = Lip(X, M, a) = {f €
Lip™(X,a) : > pep M"{!—p‘w < o0}, and || - ||oo is the summation
applied in the definition of Lip(X, M, a) which makes Lip(X, M, a) a
Banach algebra (see [5]), where M = (k!).

Assume that b(A) = A. Since A is semisimple and the identity map
I: (b(A),] - |llo) — (A, (pn)) is continuous, the identity map I is a
homeomorphism. So (4, p,) is a Banach algebra.

ProOPOSITION 2.5. Let (4, (p,)) be as in Theorem 2.2. If A is regular
then it is a QQ-algebra if and only if X is compact.

Proof. Assume that X is compact. Then it is also a compact subset of
My. If U is an open subset of M4 _containing X, then by the regularity
of A, there exists an f € A with f(gay) =0, z € X, and f|MA\U 1,
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which is impossible if U # M4. So M4 is the only open subset which
contains X. This shows that A is dense in M4, and so M4 = X. In
particular, M4 is compact and so A is a Q-algebra (see [1, 6.3-2]).

The converse is a consequence of Remark 2. 0l

The following theorem is known for a regular Banach function algebra
A and a Banach algebra B (see [2]). Applying [1, Proposition 5.6-1], we
can obtain the same result when A is a regular Fréchet function algebra
and B is a Fréchet algebra.

THEOREM 2.6. Let (A, (pn)) be a regular F f-algebra on its spectrum
M4 which is locally compact. Let (B,(q,)) be a commutative Fréchet
algebra and 6 : A — B a continuous monomorphism with a dense range.

Then 9*(MB) = Mjy.
Proof. Since 0(A) is dense in B, §*(¢)) = ¢ 08 # 0 for each ¢ € Mp.

The continuity of 8 shows that 6*(Mp) C M4. Let S = 0*(Mp) and
@ € My \ S. Since A is Gelfand normal (see [1]) and M4 is locally
compact, there exists an f € A with compact support such that f((p) =1
and suppf C M4\ S. Let I = {feA: f]g =0}, K = supp f, and

=k(K)={f€A:¢(f) =0, p € K}. Then I and J are closed
ideals in A with h(I) N h(J) = ¢, where h(I) is the set of all closed
maximal ideals containing 7. Hence I+ J = A by [1, Proposition 5.6-1],
and so there are h € J and g € I with h4+ g = 1. Since h € J, glx = 1.
Consequently, f = fg. Since g =0 on S, 8*(y)(g) = 0 for each ¢y € Mp
so that #(g) € rad(B). So we show that 8(f) = 0 and hence f = 0,
which is a contradiction. Suppose that ¢,,(6(f)) # 0 for some ng € N.
The equality 8(f) = 6(f)8(g) implies that 0(f) = 6(f)0(g"™) for each
n € N. 80 ¢n,(0(f)) < ¢no(0(£))ane(0(9™)) and hence gy, (6(g")) = 1
for each n € N. But 6(g) € rad(B) and so lim,,—.co ¥/ qn,(0(g™)) =0. O

REMARK 4.

(a) In Theorem 2.6, if B is a J-algebra, then Mp is compact and so
0*(Mp) = My, that is, Mp = M4 as sets.

(b) With the hypotheses of Theorem 2.6, 8* is not surjective even if
A is a regular Banach function algebra. For example, let X be
a hemicompact noncompact metric space, A = Lip(X,a), B =
F Lip(X, ) and 6 the canonical inclusion map. Then 6*(Mg) =
X =M,
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(c) The regularity of A cannot be omitted in Theorem 2.6. For
example, let A be as given in Remark 1, B = C([—1,1]), and 6
the canonical inclusion map.
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