• 제목/요약/키워드: admissible functions

검색결과 61건 처리시간 0.025초

다양한 방사연단 조건을 갖는 고정 및 단순지지 부채꼴형 평판 진동에 대한 경계응력특이도의 영향 (Influence of Boundary Stress Singularities on the Vibration of Clamped and Simply Supported Sectorial Plates With Various Radial Edge Conditions)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.601-613
    • /
    • 1998
  • 본 논문은 부채꼴형 평판의 원형연단이 고정되어 있거나 또는 단순지지 되어 있을 때 요각 모서리의 응력 특이도를 고려하여 자유 진동해를 최초로 구한 연구이다. Ritz방법을 이용하여 수직진동변위를 두가지 적합함수식으로 가정하였다. 본 연구에서는 부채꼴형 각도의 범위에 따른 엄밀한 진동수 및 수직진동 변위의 전형적인 등고선을 제시하였다.

  • PDF

Variable Reluctance 모터의 토크 제어를 위한 새로운 방식 (A New Approach to Torque Control of Variable Reluctance Motors)

  • 김창환;허헌;하인중;고명삼;김동일
    • 대한전기학회논문지
    • /
    • 제43권6호
    • /
    • pp.971-981
    • /
    • 1994
  • In this paper, we consider feedback-linearizing control of VR (Variable Reluctance) motors which have been increasingly used in high performance direct-drive applications. We characterize all torque controllers that can make the generated torque of a VR motor linear to torque command but without torque ripple. The torque controlles maximize the range of torque commands which are admissible under the physical limitation in stator currents. The whole class of all such torque controllers is parameterized in the explicit form which contains a function to be chosen freely. This free function can be used to achieve other control objectives as well as linear dynamic characteristics. As the examples for optimal choices of the free function, we actually determine two optimal free functions, one for minimal rate of change in current commands and the other for minimal power loss due to stator resistance. To illuminate further the practical use of torque controllers proposed in this paper, we present some experimental results for the case of a commercially available VR motor.

섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계 (Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems)

  • 박주현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

Fuzzy 다목적 선형계획법을 이용한 최적 무효전력 배분계획에 관한 연구 (A study on the Optimal VAR allocation Using Fuzzy Linear Programming with Multi-criteria function)

  • 송길영;이희영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.211-213
    • /
    • 1992
  • Fuzzy L. P. with Multi-criteria function is adopted in this VAR allocation algorithm to accomplish the optimization of co-conflicting objectives, such as the amount of the VAR Installed and power system loss, while keeping the bus voltage profile within an admissible range. fuzzy L. P., a powerful tool dealing with the fuzziness of satisfaction levels of the constraints and the goal of objective functions, enables us to search for the solutions which may contribute in VAR planning. This advantage Is not provided by traditional standardized L. P. The effectiveness of the proposed algorithm has been verified by the test on the IEEE-30 bus system.

  • PDF

축방향으로 움직이는 박막의 면내 진동해석 (In-plane Vibration Analysis for an Axially Moving Membrane)

  • 정진태;신창호;김원석
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

축방향 이송속도를 갖는 현의 모델링 및 진동해석 (Dynamic Modeling and Analysis for an Axially moving String)

  • 신창호;정진태;한창수
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF

섭동법을 이용한 우주 구조물의 동적 운동 해석 (Dynamic Analysis of Space Structure by Using Perturbation Method)

  • 성관제;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1030-1036
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper. we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

섭동을 갖는 뉴트럴 시스템의 성능보장 안정화에 관하여 (On Guaranteed Cost Control of Uncertain Neutral Systems)

  • 박주현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.129-133
    • /
    • 2003
  • In this paper, we consider the robust guaranteed cost control problem for a class of uncertain neutral systems with given quadratic cost functions. The uncertainty is assumed to be norm-bounded and time-varying. The goal in this study is to design the memoryless state feedback controller such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound lot all admissible uncertainty. Some criteria for the existence of such controllers are derived based on the matrix inequality approach combined with the Lyapunov second method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

선형 Singular 시스템 이론의 전기 회로에의 적용 (An Application of Linear Singular System Theory To Electric Circuits)

  • Hoon Kang
    • 대한전자공학회논문지
    • /
    • 제25권12호
    • /
    • pp.1625-1632
    • /
    • 1988
  • This paper aims not only to introduce the concept of linear singular systems, geometric structure, and feedback but also to provide applications of the multivariable linear singular system theories to electric circuits which may appear in some electronic equipments. The impulsive or discontinuous behavior which is not desirable can be removed by the set of admissible initial conditions. The output-nulling supremal (A,E,B) invariant subspace and the singular system structure algorithm are applied to this double-input double-output electric circuit. The Weierstrass form of the pencil (s E-A) is related to the output-nulling supremal (A,E,B) invariant subspace from which the time domain solutions of the finite and the infinite subsystems are found. The generalized Lyapunov equation for this application with feedback is studied and finally, the use of orthogonal functions in singular systems is discussed.

  • PDF