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Influence of Boundary Stress Singularities on the Vibration of Clamped
and Simply Supported Sectorial Plates With Various Radial Edge Conditions
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ABSTRACT : This paper reports the first-of-its~kind free vibration solutions for
sectorial plates having re-entrant corners causing stress singularities when
the circular edge is either clamped or simply supported. The Ritz method is
employed with two sets of admissible functions assumed for the transverse
vibratory displacements. Accurate frequencies and normalized contours of the
transverse vibratory displacement are presented for the spectra of sector

angles.
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1. Introduction

Documented in the literature spanning
nearly two centuries are hundreds of
technical publications explaining the free
vibration characteristics of complete circular
and annular plates with various support

1) B39, A&eddgn 73T AIA
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conditions along the circumferential bound-
aries. Extensive narratives of this large
body of work have been chronicled in a
summarizing monograph'” and a series of

4 .
234 The scope of previous

review articles'
work done for the sectorial plate (see

Fig. 1), in comparison, is quite narrow.
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Fig.1 Geometric description of a sectorial Plate

Several authors have offered vibration
data for thin sectorial and annular sector
plates with various edge conditions on the
circular and radial edges(5'6'7‘8).

Exact solutions for frequencies and
mode shapes have long been known to
exist for sectorial plates having simply
supported radial edges, with arbitrary
conditions along the circular edge'".
19 that such

solutions are not applicable when the

However, it has been shown

sector angle @ exceeds 180° (forming a
re-entrant corner, see Fig. 1). An exact
solution for this situation involves non-
integer order ordinary and modified Bessel
functions of the first and second kinds,
and particular relationships among the
four constants of integration to satisfy the
corner stress singularities properly. In
spite of the existence of a number of

(111 .
R 2), one finds it

semi-analytical solutions
intractable to derive exact solutions for
sectorial plates with other combinations of
clamped, simply supported, and free
radial edges (i.e., not both edges simply
supported). In fact, little published vibration
data exists for such sectorial plates with

(@>180% or for the special case of a
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semi-circular plate (@ =180"), albeit a
substantial amount of data exist for
salient angles (<1809, In some
recent papers incorporating corner stress

(9.10.14.15) )
" accurate (five

singularity effects
significant figure) frequencies and mode
shapes were presented for sectorial plates
with free circumferential edge and
clamped or free radial edges., and for
completely free circular plates with rigidly
constrained or free V-notches.

The present work examines sectorial
plates having either a clamped or simply
supported circumferential edge, and arbitrary
combinations of clamped, simply supported,
and free radial edges, including stress
singularity effects at the sharp vertex
corner (see Fig. 1). For a very small
notch angles, 360°- (say, one degree or
less), a deep, rigidly constrained, hinged,
or free radial crack ensues. A Ritz
procedure is employed in which the
transverse displacement field is approxi-
mated as a hybrid set of trial functions
consisting of a complete set of admissible
algebraic-trigonometric polynomials in
conjunction with an admissible set of
corner functions that exactly model the
singular vibratory moments which exist at
the vertices of corner angles (@) which
(617 " The first set

guarantees convergence to exact frequencies

exceed 180 degrees

as sufficient terms are retained. The
second set substantially accelerates the
convergence of frequencies, which is
demonstrated through convergence studies
summarized herein. Accurate non-

dimensional frequencies are presented as
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the sector angle e is varied. To better
understand the effects of the stress
singularities existing in the title problem,
normalized contour plots of the vibratory
transverse displacements are studied for
plates having sector angles a = 90° 180°
(semi-circular), 270°, 300°, 330°, 355°
and 360° (radial line crack).

2. Methodology

Consider the polar coordinates (7, 8)
originating at the vertex of the sectorial
plate of radius, a, shown in Fig. 1. The
transverse vibratory displacement w is
defined in terms of these coordinates as
follows:

w (7, 0,0)=W(r, Osinwt (1)

where ¢ is time and w is the circular
frequency of vibration. The boundary
conditions for the various plates studied
are identified according to the lettered
edges shown in Fig. 2.

cce CcsC CFC

[o e}
a
@

CCs CsS CFS

Fig. 2 Sectorial plates with various combina-
tions of clamped, simply supported,
and free edge conditions.
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Displacement trial functions are assumed
as the sum of two finite sets: W =W,+
W., where W, are algebraic polynomials
and W are corner functions. The admissible
polynomials for the CCC, and CCS plates

are written as

M
W,= gi(7, 3)( m§2,4 ngz 4A,,mr”'cos nf+

M
2 A r"’cosn@) (2)
m=1,3,5 n=1,3,5

for the symmetric vibration modes, and

M
W,= g(r, 6’)( mz; ) ng; 4Bm,,r’"sin né

M
+ mg&s p .3'5Bm,,r smnﬁ) (3)

for the antisymmetric modes, and for the

CCC plate

a1(7, 0 =(+a*[(6/0)*~ (1/2*](a*~ A7,
(4a)

CCS plate

(7, ) =(r12)*[ (8/2)*— (1/2)2)4(a* - A,
(4b)

each of which is defined to satisfy the
essential boundary conditions along the
radial edges (see Fig. 1). Also indicated
in Fig. 1 are datum lines wutilized to
define the symmetric and antisymmetric
modes [(Egs. (2) and (3)). No symmetry
exists for the CSC, CSS, CFC, and CFS
plates. Thus,



M
W,= go(7, 9)( m:%:“ ":%'AAmnr’”cos no

M
+ 2 A,,.v"cos nd
m=1,3,5»=1,3,5

(5)
M
+ mz;'“g'llenrmsin nd
M,
+ mx$.3.5n: - _5Bm”7m5in”9),
in which for the
CSC plate
(7, 0)=(r/a)* (6/a) (8/a—1)* (a*— )%,
(6a)
CFC plate
g:(r, 0)=(v/@)* (8/a) (6]a—1)*(a" = 1),
(6b)
CFC plate
g(7, ) =(ra)*(8/a)* (a* — *)*, 60)
CFS plate
& (r, ) =(r/a)*(8/a)* (a*— ). (6d)

In Egs. (2), (3), and (5), Amn and Buma
are arbitrary coefficients, and the values
of m and »# have been specially chosen
to eliminate those terms which yield
undesirable singularities at »=0. and yet,
preserve the mathematical completeness of
the resulting series as sufficient terms are
retained. Thus, convergence to the exact
frequencies is guaranteed when the series
is employed in the present Ritz procedure.

The displacement polynomials [Egs. (2),
(3). and (5)] should, in principle, yield

accurate frequencies. However, the number
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of terms required may be computationally
prohibitive. This problem is alleviated by
augmentation of the displacement poly-
nomial trial set with admissible corner
functions, which introduce the proper
singular vibratory moments at the vertex
corner formed by the radial edges (Fig.

1). The set of corner functions is taken as
W.= G(7) ng'ck, (7

where Cr are arbitrary coefficients, and
W, are solutions of the fourth-order
biharmonic, static equilibrium equation

for bending of plates at acute corner

angles(16)

w*., (r,0)=
P Lapsin(A,+ 1) 8+ bycos(A,+1) 8

+ cysin(Ad,— 1) 8+dicos(A,— 1) 6. (8)

The essential boundary conditions along

the radial edges =*a/2 may be clamped

lie.. W7, £af2)=-L -2ML LD _gy

simply supported [(i.e.. Wr, xa/2)=
M7, +a/2)=0), or free (i.e., V7, Ta/2)=
M7, +a/2)=10), where M, and V, are

the wusual radial moment and shear
defined elsewhere(1). These conditions are
used in Eq. (8) to construct a set of
algebraic equations from which the values
Ak are obtained as roots of the vanishing
determinants.

For the symmetric modes of the CCC
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and CCS plates, ar=cx=0 in Eq. (8), and

satisfaction of the clamped-clamped (C-C)

radial edge conditions results in the

following characteristic equation for the
Ap:

sin A a=— A,sina. (9)

The corresponding corner function for
the C-C edge conditions is

cos(A,—1)a/2
cos(A,+1)a/2

cos(A,+1) 8+ cos(A,— 1) 4.

W‘c1(7’ 0) = 7/‘“] -
(10)

Similarly, for the antisymmetric modes
of the CCC and CCS plates, bx=dr=0 in
Eq. (10), and satisfaction of the C-C
radial edge conditions results in the

characteristic equation for the A,:

sin A,a= A,sine. (1D

The corner functions used for the
antisymmetric modes are analogous to
those defined for the symmetric ones in
Egs. (12), except the cosine functions are
changed to sine functions, and vice-versa.

Imposition of the clamped~hinged (C-S)
radial edge conditions yields the

characteristic equation for the A,:

sin2 A ,a= A,;sin2a, (12)

and the corresponding C-S corner
function

H 10 45 19984 129

Wilr, )= r"+1[sin(A,+1)8
sin(/ik+ 1)0/2

 cos(+1)af2 cos (4, +1) 8
sin(A,+1)a/2 .

" sin(A,~ 1 a/2 sin(d,—1)¢
sin(A,+1)a/2

+ Sin(/ik“l)a/z COS(/‘};_I)H .

(13)

Finally, the characteristic equation in A,

for the clamped-free (C-F) radial edges is

sin A= = 151(3_'_ i é; 5 Aisin e, (14)
and the associated C-F corner function is

Wilr, )= ¥*"[sin(Ay+1) 0+ &, cos(A,+1) 8
+ §zksin(/1k— 1) 6+ ;akcos(Ak_ 1)0]
(15)

with

My _ My, M3,
CI‘_ ak ’ CZ,,_ 6k ’ §3/,_ ak s (163-)

#1,= (Ap—1)py,sin(A,+ 1)%
—(Ap+ 1) my,c08(A,+ 1)% cos(A,—Da

+ (A= D7y, sin(A,+ l)g- cos(A,—1a,
(16b)

= (Ak+1)[771,c05(/1k~1)%
—nzkcos(/lk—l)%cos(/l,,-%-l)a (16¢)

- ﬂngin(/ik"‘ 1)'% sm(A,,+ l)a],



H3, ™ (Ak+1)[771¢5in('{k—1)—§"
+772ksin(/1k—l)*%cos(/lk+l)a (16d)

— 73, c08(A,— 1)% sin(/lk-H)a],

8= (A= D my,cos(Ap+ 1)%
—(Ap+ 1Dy sin(A,+ 1)% sin(A,—Da

— (A= 1) m,cos (A, + 1)% cos(A,—1Dae,
(16e)

in which
7= Av—=1D+@B+v), 7,=(A+D(v—1),

73,= (A= D(v—1).
(160

For the CCC, CFC, and CSC plates, the

boundary function G(#) =(a’—)? in Eq.
(7)., whereas for the CCS. CFS, and CSS

plates, G(»N=(a*—7"). Some of the 4,

obtained from Egs. (9), (11), (12). and
(14) may be complex numbers, and thus.
result in complex corner functions. In such
cases, both the real and imaginary parts
are used as independent functions in the
present Ritz procedure outlined below.

In employing the Ritz method for free
vibration problems, one has to construct
the following frequency equations which,

for the symmetric modes, are

04 (17)
a_ _ =
ack _(Vmax Tmax) Ov
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and similarly for the antisymmetric
modes, using Bwmx in place of Ams. In
Egs. (17), the maximum strain energy,
Vimar, in the plate due to bending in a

vibratory cycle is

Vo= 5 [[ Gt 20°

=200 — (2 26— era)]dA,

(18)

dA=rdrdd, D=Er*/12(1—1") is
the flexural rigidity, & is the plate

where

thickness, E is Young's modulus, Vv is
Poisson’s ratio, and yx,, x4, and x,s are
the maximum bending and twisting

curvatures (and sinwt=1 assumed in Eq.

(1):

The maximum Kkinetic energy is
2
_ 0w 2
T o =28 fA W dA, (20)

where o is the mass per unit area of the
plate. The required area integrals in the
dynamical energy Egs. (18) and (20) are
performed numerically, otherwise exact
integrals are tractable when A, is real.
Substituting Egs. (2)-(7), (10), (13),
(15), and (16) into (17)-(20) yields a set
of  homogeneous

algebraic equations

involving the coefficients Am»n (or Bmn)
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and C:. The roots of the vanishing
determinant of these equations are a set
of eigenvalues, which are expressed in
terms of the nondimensional frequency

parameter waz\[TD commonly used in the
plate vibration literature. Eigenvectors
involving the coefficients Awmr (or Bma)
and Cp are determined in the usual manner
by substituting the eigenvalues back into
the homogeneous equations. Normalized
contours of the associated mode shapes
may be depicted on a 7—@ grid in the
sector plate domain, once the eigenvectors
are substituted into Egs. (2), (3), (5),
and (7).

3. Convergence Studies

Having outlined the Ritz procedure
employed in the present analysis, it is
now appropriate to address the important
question of convergence rate of frequencies,
as various numbers of algebraic-trigono-
metric polynomials and corner functions
are retained. In this section, convergence
studies are summarized for sectorial
plates with a 300 notch angle (e, e¢=
330°). All of the frequency and mode
shape data shown in the present and
following sections are for materials having
a Poisson’s ratio ( v) equal to 0.3.

Consider the first six nondimensional
frequencies wa® o/D for the CFC (Table
1) sectorial plates (@ = 330%. Numerical
results are shown as 40, 60, 84, and 112
polynomial terms are retained in Egs. (2),
(8), or (5) in conjunction with 0, 1, 5,

H 103 4% 19984 12%

10, 15, and 20 corner functions employed
in Eq. (7). In these cases a larger number
of polynomial terms is required due to the
absence of symmetry of edge conditions.

Table 1. Convergence of frequency parameters
wa® p/D for a sectorial plate having
clamped-free radial edges and
clamped circum ferential edge

(a= 3307
Mode fi(;'ngf Total number of terms in Wy
N0 | functions | 40 60 84 | 112
0 23.753(23.528|23.343(23.200
1 23.475(23.321(23.170(23.046
1 5 21.299121.240]21.200|21.168
10 20.989(20.980120.977]20.975
15 20.979120.97620.974)20.973
20 20.978(20.975120.974|20.973
0 28.773|27.884(27.190|26.700
1 23.815|23.638(23.518|23.429
9 5 22.659(22.602|22.565]22.540
10 22.440(22.437(22.43622.435
15 22.438(22.436(22.435(22.435
20 22.438122.436|22.435{22.435
0 33.786(32.660(31.911{31.349
1 33.401(32.226|31.458{30.897
3 5 27.186(27.134|27.104(27.082
10 26.992126.988|26.985|26.983
15 26.984126.982|26.981{26.980
20 26.984 |26.981|26.980(26.980
0 41.849140.181|39.094 |38.298
1 41.825140.154|39.069|38.275
4 5 34.672(34.581(34.513|34.465
10 34.221134.205|34.196{34.190
15 34.192134.186|34.18334.181
20 34.188134.18434.18234.180
0 50.400|48.224 {46.927 |46.032
1 50.277148.066 {46.790|45.918
5 5 44.937{44.30743.921 |43.664
10 42.477(42.438 |42.415{42.402
15 42.390(42.384 142.380{42.378
20 42.382142.380142.37842.377
0 59.704 | 57.256 | 55.836 | 54.882
1 59.575(57.184|55.801|54.867
6 5 57.282(55.286|54.19253.513
10 51.635|51.528(51.47851.499
15 51.454(51.42851.41551.407
20 51.420}51.409|51.403{51.400
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As indicated in Table 1, the lowest
frequency mode of a CFC plate exhibits a
slow upper bound monotonic decrease of

waz\/m) to an inaccurate value of
23.200, as the number of polynomial
terms (W) is increased with no corner
functions. That is, the polynomial series,
albeit complete, is converging very slowly.
An examination of the next five rows of
data reveals that an accurate value to
five significant figures is 20.973. With
trial sets of 84 polynomials and 10 corner
functions, three significant figure con-
vergence of the lowest frequency mode is
achieved. One can clearly see that by
adding the first 20 corner functions to as
few as 40 polynomials yields the value of
20.978, which is exact to four significant
figures. Table 1 explains similar levels

of convergence accuracy in the a)az\/To/—D
values achieved by using hybrid trial set
of admissible polynomials and corner
functions apropos to sectorial plates with
various boundary conditions. It should be
noted that the CFC (Table 1) case is the
one of the most challenging convergence
studies (with regard to the number of
corner functions required) among the six
problems analyzed here, and that the
other boundary condition cases required
fewer corner functions to achieve the

proper convergence of frequencies.

4. Frequencies And Mode Shapes

Tables 2 and 3 summarize the results of
extensive convergence studies of the least

upper bound frequency parameters

608

wa™V p/D for the first six modes of
sectorial plates with increasing sector
angles «=90°, 180°, 270°, 300°. 330°
350°, 355°, and 360°. Listed in Table 2
are frequency parameters for sectorial
plates having clamped-clamped, clamped-
simply supported, and clamped-free radial
edge conditions along with a clamped
circumferential edge (i.e., CCC, CSC, and
CFC), whereas shown in Table 3 are
frequency data for plates with the same
radial edge conditions and a simply
supported circumferential edge (i.e., CCS,
CSS, and CFS). Frequency parameters
corresponding to the antisymmetric modes
are indicated by a superscript asterisk (*)
as appropriate to the CCS and CCC
plates. All frequency results are
guaranteed upper bounds to exact values
(typically accurate to the five significant
figures shown in Tables 2 and 3). Hence,
Tables 2 and 3 provide an accurate
database of frequencies for sectorial plates
having various edge conditions and notch
angles against which future results
using experimental or theoretical methods
(such as finite element analysis) may
be compared.

As can be expected, the frequency
parameters of sectorial plates having a
clamped circumferential edge are higher
than those having a simply supported
circumferential edge for all combinations
of radial edge conditions. Generally
speaking, one can conclude from Tables 2
and 3 that for the first six modes
a)az\/;_o/_D decreases as the sector angle

@ increases.
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Table 2. Frequency paramsters wa® o/D for
sectorial plates having arbitrary radial
edge conditions and clamped
circumferential edge

a (de~ Mode no.

Case
grees) 1 2 3 4 5 6

90 |48.786{87.774|104.88 {136.93| 164.57 | 180.71
180 (28.125|41.726'| 58.677 | 71.950| 78.375"| 94.924’
270 |23.743(30.0417] 39.399150.241'] 62.192 | 64.352
300 |23.246 |28.005 | 35.967 |45.278"| 55.590 | 63.347
330 |22.95626.455 | 33.277 [41.389'| 50.383 |60.147
350 |22.83425.630'| 31.790 39.238| 47.506 | 56.473]
355 | 22.810(25.447| 31.450 [38.745 | 46.848 | 55.634
360 |22.789 |25.275 | 31.133 |38.287 ] 46.269 | 54.897

cccC

90 |41.726(78.375|94.922125.20] 151.87 | 167.87
180 |25.271(38.269|54.821 {67.367| 74.000 | 89.655
270 122.575(27.884|37.14347.787| 59.588 | 62.368
300 |22.432(26.07433.974|43.149| 53.296 | 62.011
330 |22.376(24.718| 31.481 |39.506| 48.368 | 57.995
350 [22.358|24.025]30.100 |37.487| 45.644 | 54.494
355 |22.355]23.875]29.783 37.025( 45.020 | 53.691
360 |22.351(23.736{29.478 36.578| 44.419 | 52.919

90 |[26.476(52.109{69.078 |91.503| 113.00 | 131.60
180 | 21.501[29.295]43.458 |59.486{ 61.193 | 74.420
270 |21.122(23.566] 30.964 |40.603| 51.460 | 59.255
300 21.083]22.811]28.724 {37.010| 46.375 | 56.688
330 {20.973|22.435|26.980 {34.180| 42.377 | 51.400
350 [20.880122.326(26.028 {32.610{ 40.161 | 48.466
355 |20.858(22.309|25.813{32.251| 39.653 | 47.795
360 |20.837|22.296| 25.606 {31.903| 39.163 | 47.147

(61219

CFC

*Antisymmetric modes

Table 3. Frequency parameters wa™ o/D for
sectorial plates having arbitrary radial
edge conditions and simply supported
circumferential edge

Case| a(de- Mode no.
grees) 1 2 3 4 5 6

CCS | 90 137.457(72.951*{88.711] 118.71 | 144.45*| 159.53
180 | 19.504|31.4317|46.601| 58.548 | 64.544% | 79.602*
270 | 15.777|21.252%[29.442| 39.092* | 49.854 | 51.669
300 | 15.34819.503%|26.436| 34.672* | 43916 | 50.743
330 |15.09318.175%|24.092| 31.229% | 39.247 | 48.046"
350 |14.985]17.471%122.802(29.333%| 36.679 |44 733"
355 |14.963[17.314*|22.508(28.900* | 36.093 |43.977*
360 |14.943[17.167°|22.232{28.496" | 35.558 [43.348"
CSS| 90 |31.431]| 64.545 [79.607| 107.97 | 132.65] 147.55
180 |17.164 | 28.481 [43.247| 54.386 |60.675| 74.758
270 (14.830| 19.454 {27.527| 36.973 {47.591 | 49.861
300 [14.690| 17.900 {24.754| 32.846 {41.922| 49.536
330 (14.631| 16.737 [22.585| 29.624 |37.506 | 46.167
350 [14.610| 16.140 [21.389] 27.847 |35.077| 43.011
355 [14.606 | 16.010 [21.115] 27.441 | 34.522| 42.288
360 |14.603[ 15.889 {20.851] 27.049 | 33.987 | 41.595
CFS| 90 |18.049| 40.965 |55.916| 76.896 |96.430| 113.46
180 [13.828( 20.707 {33.180} 47.359 [49.023| 60.807
270 [13.504 | 15.748 |22.161| 30.648 | 40.349 47.040
300 | 13.478] 15.085 {20.214| 27.470 [ 35.789| 45.061
330 |13.402 14.733 |18.703| 24.982 | 32.224 | 40.293
350 |13.335| 14.620 |17.881| 23.606 | 30.257 | 37.657
355 |13.319( 14.601 [17.695| 23.292 {29.807| 37.057
360 [13.303| 14.585 [17.516] 22.988 [29.373| 36.476
*Antisymmetric modes
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Shown in Figs. 3-5 are normalized
displacement contours for the first three
modes of sectorial plates with various
conditions for @ =90° 180° 270° 300°
330°, 355°, and 360°. These contour plots
are normalized with respect to the
maximum transverse displacement component
(t.e., —1<W/ Wpx<1, where the negative

values of W W,., are depicted as dashed

lines in Figs. 3-5, and the nondimensional
frequencies shown correspond to the data
listed in Tables 2 and 3). Contour lines
are shown for W Wpa. 0.2, £0.4, +0.6,
+0.8, *1. Nodal patterns of each mode
are shown in Figs. 3-5 as darker contour

lines of zero displacement ( W W =0)

during vibratory motion.

For CCC and CCS sectorial plates, a
horizontal nodal line passes through the
vertex of the notch in the antisymmetric
mode 2. Thus. the singular vibratory
stresses caused by the notch effect are
considerably less, and fewer corner functions
are required to achieve sufficiently
accurate convergence of these modes. It
is seen that a sharp notch (a=355°)
causes almost radial nodal lines extending
from the vertex of the notch to the
circumferential edge in the symmetric
mode 3 of the CCC and CCS sectorial
plates. Interestingly, the radial nodal
lines in the symmetric mode 3 shift
slightly away from the vertex of a 90°
notch (a=270°) in these cases.

The lowest frequency (i.e.. fundamental)
symmetric mode of the CCC and CCS
plates appear to be more strongly



influenced by the notch angle than the
antisymmetric mode 2 and symmetric
mode 3. In the fundamental mode, the
sharp curvature and distortion of the
nodal lines is quite apparent due to the
notch effect, more so for the CCS plate
than the CCC one. Given the absence of
symmetry in the GSC and CSS displacement
contours, their nodal patterns are rotated
slightly in the clockwise direction in
relation to the nodal patterns of the CCC
and CCS plates, respectively.

It can also be seen that in the mode 3
of the CFC and CFS plates, the horizontal

radial nodal line of the former plates
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Fig. 3 Normalized transverse displacement
contours (W/Wmex) for the first three modes
CCC and CCS sectorial plate
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appears slightly rotated from the
horizontal in the clockwise direction in
the latter plates. Across the board in Figs.
3-5, the

patterns of the sectorial plates are only

W Woax contours and nodal

slightly changed by the clamped or simply
supported circumferential edge conditions.
As expected, the contour lines W Wy = +0.2
occur closer to a simply supported
circumferential edge than a clamped one,
since in the latter both the normal
displacement [ W{a, §)) and the bending
slope [ 0W(a, 6)/37) vanish.
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Fig. 4 Normalized transverse displacement
contours (W/Wmex) for the first three modes
CSC and CSS sectorial plate
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Fig. 5 Normalized transverse displacement
contours (W/Wmex) for the first three modes
CFC and CFS sectorial plate

5. Concluding Remarks

Highly accurate frequencies and mode
shapes for sectorial plates with a clamped
or simply supported circumferential edge
and arbitrary various radial edges have
been obtained using a Ritz procedure in
conjunction with classical thin-plate theory.
In this approximate procedure, the assumed

“{ransverse displacement of the plate

constitutes a hybrid set of complete
algebraic-trigonometric polynomials along
with corner functions that account for
singular bending moments at the vertices
of acute corner angles. The efficacy of such
corner functions has been substantiated
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by an extensive convergence study of
nondimensional frequencies of clamped
and simply supported sectorial plates
having various combinations of boundary
conditions on the radial edges.

Detailed numerical tables have been
prese‘nted, showing the wvariations of
nondimensional frequencies (accurate to
at least four significant figures) over a
wide range of vertex angles a. On the
whole, the numerical findings reveal that
the constrained radial edges, including
singularity effects, causes the first six
wa™Vp/D values to decrease as the sector
angle « increases. This frequency decrease
is observed to a larger extent in the
higher modes than in the lower ones.
Some exceptions to this overall trend have
been discussed in the previous section.

Some new understanding has been offered
here about the mode shapes of sectorial
plates with clamped, simply supported, or
free conferential and radial edges. As one
examines the nodal patterns and nor-
malized transverse displacement contours
of the sectorial plates presented herein, it
can be seen that a deep wide notch (a
=270°) or sharp crack (a=355°) causes
noticeably distorted and complicated nodal
lines in the first three modes. Generally
speaking, for @« >180° highly localized
bending moment stresses at the vertex of
Jrigidly constrained, hinged, or free radial
edges of sectorial plates may "become
detrimental in connection with vibfation.
This is because the singular stresses at
the constrained vertex of sectorial plates

with @2 355 can become quite serious
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during vibration by constituting an origin
for crack propagation during fatigue.

The present variational Ritz approach is
computationally effective for modeling the
unbounded vibratory stresses, which exist
at the sharp vertex corners of constrained
radial edges of sectorial plates. Some
fundamental mechanics understanding of
the effect of these localized stresses on
constrained sectorial plate dynamics can
be obtained through careful examination
of the frequency and mode shape data
reported herein.
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