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An Application of Linear Singular System Theory To
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Abstract

This paper aims not only to introduce the concept of linear singular systems, geometric structure,
and feedback but also to provide applications of the multivariable linear singular system theories to
electric circuits which may appear in some electronic equipments. The impulsive or discontinuous
behavior which is not desirable can be removed by the set of admissible initial conditions. The
output-nulling supremal (A,E,B) invariant subspace and the singular system structure algorithm are
applied to this double-input double-output electric circuit.

The Weierstrass form of the pencil (sE-A) is related to the output-nulling supremal (A,E,B)
invariant subspace from which the time domain solutions of the finite and the infinite subsystems
are found. The generalized Lyapunov equation for this application with feedback is studied and
finally, the use of orthogonal functions in singular systems is discussed.

I. Introduction
Consider a differential equation of the form f(x,%u,t)=0 (1)
ineq (1).
of of{

df———dx+~——dx+a t—d +——du (2)
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de=Adx+Bdu+(df/%{— dt) (3)
o
As df = 08t dt, a linear time invariant approxi-

mation of eq (1) with a control input u(t) can
be described as eq (4).

Ex=Ax-+ Bu (4a)

y =Cx+Du (4b)
where x(t) Rn, u(t) € Rm, y(t) € RP and
x(o)=Xo.

If | E |=0, we call eq (4) a linear singular system.
In the frequency domain, eq (4a) is

(sE—~A)X(s)=Ex, + BU(s) {5)

For existence of a solution x (t) for all u(t) when
x0=0, conditions of (6), (7) are necessary and
sufficient.

R(sE—A)D R(B} {6)

a. e., or

rank[sE—A Bl)-—rank(sE—A] a.e (7)
where R(A) denotes the range of A and N(A)
represents the null space of A.

If the pencil (sE-A) is regular, i.e., if &(s) =[sE-
A| # 0, then the system eq (4a) is solvable. For
the uniqueness of a solution to Eq (4), necessary

and sufficient conditions are as follows;

N(sE—A)D N(C) a.e., or

(8)

sE—A
rank[ J =rank[s E—~A] s.e (9)

The roots of 4~ (s) are called finite relative
eigenvalues of (E,A) while infinite zeros of (sE-A)
are infinite relative eigenvalues of (E,A). The
finite spectrum of (E,A) is denoted by o; (E,A)
and the infinite spectrum of (E,A) is 0, (E,A)
and the relative spectrum of (E,A) is o(E,A) =
0¢ (E,A) U0, (E,A).

The output-nulling (ON) (A,E,B) invariant
subspace for the linear singular system in eq (4)
satisfies

(10)
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The supremal ON (A,E,B) invariant subspace L*
can be computed recursively as follows;
Xea=|A]" [[E|Xe+[B
(11)

C 0] D

with x0=Rn, then L*=x,, where o0 is the first k
such that LT SRR

The supremal (A,E,B) invariant subspace con-
tained in k which satisfies (10) with N(C)=K
and D=0 is defined as

V*—sup{SCK | ASCES+ B} (12)
and V* can be found in the recursion
Xxa= "KNA "(EX,+ "B}, Xo—R" (13)

V* is used for finding the reachable and controll-
able subspaces for the system (4), and also for
solving the disturbance decoupling problem for
linear singular systems.

II. Mathematical Modeling for an Electric Circuit

Considering double-input double-output
circuit in Fig.1, we can describe this transistor
circuit by the equivalent circuit of Fig.2. Here,
u; and u, are system inputs, y, and y, are system
outputs, and state-space variables are chosen as
follows:

a

X177 Ve,
X2 =1,
Xz:Vc2
Xe =1y 1(14)
Furthermore, there are four state equations and
two output equations which are

(15)

utve, AT 0 fi=eave,

u,+vc2=y\:r.(a|i,‘1z) iz=csve,

By using eq’s (14), eq’s (15) can be described
as a state-space representation.

¢t 000 0 1 00 00
0c: 0 O0jx={0 0 0 1|x+[00]u
00 00 1 rn 00 10
0 000 0 —ra;1r,;. 01

(16a)



Fig.1. A double-input double-output transistor cir-
cuits.
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Fig.2. Equivalent circuit of Fig.1.

0 ra, 0 —r,
y= x (16b)
0 0 0 ree

where x= [xx2x)", u=luu.)", and y=I[y\y:)"
Therefore, the system in eq (16) is singular since

i E [ =0 and if we assume that

Clzclzl[F], F|:P2=PL=1[QJ, ay=@a,=
=1[A/A]

then this results in a linear singular system in eq

a7

> Ex=Ax+Bu x(0)=x¢ (17a)
y=Cx (17b)
[1000 0 100 00
where E=0100A=0 001B=00
0000 1 100 10
10000, 0—-111 01
g c (010 —1
an “looo 1
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The pencil (sE-A) is

s—1 0 0
0 s 01
sE-A=) 11 0 o
0 1-1-1

and A(s) = |sE—Al =—5s—1

A Test for regularity is called shuffle algorithm:
For k=1..n do

Ek Ak E4(+1 Ak +1
T = (18)
Ac 0] 10 Awn

with Ek +1 full row rank, Tk nonsingular row
compression, and EO =E, AO = A, A0= 0.

Then the pancil is regular iff IEn | #0.

In the above example, we get

1000:0 100 1000 10100
0100:0 001 0100 0001
T.T.T,{0000:1 100(=|]0012 :0000
0000:0—-111 1000-1 0001,

0000:0 000

Thus, (sE-A) is regular since |E, | # 0, and E,
has full row rank.

II. Weierstrass Form of the pencil (SE-A)

Now, let us look at the relative eigenstructure
of (E,A). As we know &(A)=-A-1, A;=-1, n;=dim
N (A; E-A)=1, and a rank 1 finite relative eigenve-
ctor is obtained by eq (19),

(ME—A)v;,= 0 for 1<jsn, (19)

and rank (k + 1) finite relative eigenvectors are
given by

k+1

(A E-A)v," =—Ev), for k=1 (20)

Since |E|=0, there exist infinite relative eigenvalues
and if we define n=dim N(E) then the rank 1
infinite relative eigenvectors are given by

Evl,= 0 for 1<j<7 =2 in thisexample (21)

also, the rank (k + 1) infinite relatjve eigenvestors
are derived by

(1627)
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Ev:f1 =AvE,

J

for k=1 (22}

In this multivariable system case, we have one rank
1 finite eigenvector and two rank 1 infinite and
one rank 2 infinite eigenvectors.

So, in order to get the Weierstrass form in eq (23),
e.g.,

W' (sE—A) V= (23)

first of all, V and W matrices have to be obtained
as

1: 0 00 1: 0-10
yo| "1t 010} o f-1i-1 01
~2: 1 00 0: 0-10
1:-1 01 0: 0 11

since vi,={1 —1 —2 1J7
VL1==[O 0 1 _‘IJT
Ve =[(000 1)7

and v.i=(0 —100)7

1 0-10
-1-1 21 and from eq (23),
Thus, W~ the Weierstrass
0 0-10 .
form is
0 0 11 obtained.
skl 0 0 0
. . 0 :1—-1 s O
. W (sE—A) V= 0 : 0-1 o
0o : 0 0-1
010
where J={(—1), and N=|00 0
000, ,

and N®=0 with e=2.

By performing transformation, X (s)=V'! X(s)
and premultiplying W' in the Laplace domain
of eq (24), we can separate the system into two
subsystems.

(sE—A)X (s) =Ex,+BU (s) (24)

W' (SE—A) VX' (s) =W 'BU(s)+W'x, (25)

Therefore, from eq (25)

sI—1J: 7
csN—1|X’ (s) =[&J U(s)+W™' Vxi

B,

(26)

In the time domain, eq (26) has two subsystems,
the finite (slow) subsystem Z° and £ = the infinite
(fast) subsystem.

2 i =Jx+Buwu (27a)

3" . Nx, =x,+B,u (27b)

where x, € R™, x, € R™ and n, =deg |SE-Al.

Then the solution of eq (27) becomes simple as in
eq (28).

X () =e"'x(0)+ 4" " Byu(n)dr (28a)

a-1 a-1
X () =— 25 8" N'x,(0) — § N' B,u® (1)

i=1

(28b)
In the above example, J, N, B; and B, are
J=[—1] E.=(—10)
010 21
N=1000 B:=1-10
000 11
and x' (1)=V 'x(t)=[(x] 3.
The solution is as follows:
. (t)=e i, (0) — A'e"u (r)de
010
x,(t)=—6()[{ 000
000
10 21
u, u,
%z (0) — 00 ] =10 l }
u; Uz
00 11

When u(t)=0, impulsive behavior cannot appear
from initial conditions x, (0) if x, (0) € N(E),
and in the case u(t) ¥ 0, we can choose u(t) to
eliminate the discontinuity.

Hn=R™ ¢ R (B: NB.]

(1628)



The set of x(0) which does not show any
impulsive behavior is Hl +N(E).

Here N(E) =R[e, ¢, ] and HI=R[1-1--1-l]T.

IV. Singular System Structure Algorithm

The singular system structure algorithm can be
used in the optimal control problem and it gener-
alizes Silverman’s structure algorithm and
Luenberger’s shuffle algorithm. This generalized
algorithm relates L* in eq (11).

step (i) Setk=0;E,=E;A,=A;B,=B;C,=C;
De=D;C,=0

step (ii) Find constant unitary transformations
Tk and Sk such that

n n m n n m
Tk Ek Ak Bk e = Ek+l Aku Bku Fk+1
Cx 0 Ot 0 A. B
S 2%
n m n m
S, C« D« ‘Skv Cxs1 Diar {sxa (29b)
A« B« Cx 0 tier

with Ek+1’ Dk+1 having full row rank 41
Si+1 Tesp.

step (iii) If tk+1 =0 or S+l =0 then go to step
(iv), else set k=k+1 and go to step (ii).

step (iv) Define L=k+1. End.

In the circuit example in Fig.1, the singular system
structure is applied as follows:

step (i) k=0; same as above.

step (ii) 4 4 2
1000:0 100:00
0100:0 001:00
0000:1 100210

k=0t T 10000:0-111:01]
0000:0 000:00
10000:0 000:00
) 4 4 2
1000:0 1002002
0100:0_001:00
0000:1 100:10
10000:0—-111:01
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4 2
0 10-1:00),
S,/ 0..00_ 1:001
1 10 0:10
0-11 1:01
4 2
1 10 0:10],
0—-11 1:01
0 10-1:00
0 00 1:00]%
100 0:0100:00],
k:'l: Tl _O__l_o___o_'_q_o_q_l_.o_g —
010 1:0000:00,
000 1:0000:00

1000:010 0:00
0100:000 1:00
0001:000 0:00

0000:000--1:00
10 0:10

100 0:0100:00

kegr | QLOL0I000 15001
000 1:0000:00
000 1:0000:00

1000:0100:00

0100:0001:001"
0001:0000:00

0000:0000:00

0 100:10]2
S:[1-111:01| =

0 000:00
1 100:10
0-111:01

10 000:00/

since te+1 =t3=0 or c3=0, therefore L=k+1=3.
The relationship between singular system structure
algorithm and recursion in eq (11) is

(1629)



128 1988 128 EFILBEHRNEE H 2% & 12 %

-0

Q0O

- 160 N (C)) 0

o .-

k -

if i =L then C.=0.

010 —1
In our example, C,=0, CI:[ },
- - 000 1

C,=(000 —1), andC;=0, therefore,
000 O
3 0 0 —_
X:= N N(C;)= N 1 ! =R [ei e5)
-1 000 1
000 —1

Now, let’s compare with recursion in eq (11).

X,=R* and EX,=Rle: e,], EX,+B~R'
(EX,+B)*A=0

X;= N

C 0101
(EXﬁB)lAJJ? N [o 00 1’
= R (e &)
EX,=R[e:, EX,+B=Rl(e,: ese,]
(EX,+B)*A={0100)] A-{000 1)

c 010 1

- =N
X: Nl(EXHB)LA' 000 1
000 1

R (e, es) = X, stop

S L*=X,—R (e, es)]=ON sup(A, E, B)

invariant subspace

ASCES+ B and CSC 0 are satisfied since
AS=R(e; e,JCR[e;e;e,)=ES+B and CS=0.

V. Generalized Lyapunov Equation and
Feedback

Consider the generalized Lyapunov equation
in eq (31).

el ol 1ol .

After suitable manipulations, we can obtain eq
(32).

(sSE-A)S(sl—F)™' =ES +BG(s[-F)'

(32a)

0=CS(sI-F)"' +DG(sI-F)"' (32b)
The Laplace transform of eq (4) becomes

(sE—A)X(s) =Ex(0) +BU(s) (33a)

Y(s) =CX(s) +DU(s) (33b)

Let’s define a feedback wu(t)=Kx(t} (34)

which is applied to the system (4) then
Ex (1) = (A+BK) x(t) (35a)
y(t) = (C+DK) x(t) {35b)

There exists a K such that K=GS* with §*s=I
(36)

and (A+EK) S C ES, (C+DK)S = 0 if and only if
(37)

S satisfies (10), i.e., ON (A,E,B) inveriant
subspace.

A feedback K satisfying (37) is called on ON
friend of S, and N(E) N $=0 should hold in order
to guarantee regularity of [sE-(A+BK)].

From eq (31!), there is a unique solution to F
given S and G

ESF=AS+BG (38)

if and only if ES has full column rank, or N(E) N
R (S) =0.

Thus, an ON friend of S can be found as follow-
ing:

S= Rle: es) and B= [e; e,)

(ES - B,) [F J:AS+Bsz
G,
In the electric circuit example, since ES N B =¢,

[ES-—-B] [ f}] = AS with ES full column rank

120 0 00 But, ES has a
0: 0 O [F']: 00 rank of 1.
0:-1 O0}LG] 10 .".No spectrum
0: 0 ~1 01 assignability



xR
HEE
G,: -1 0
0 -1
.‘.K=GS*=[710 00]
00—-10
In general the gainK:[*lkz Ok.}
Oke =1k

Check (A+BK) S C ES and CS=0 are satisfied.

V1. Reachability and Controllability Subspaces

The reachability and controllability subspaces
can be obtained by the following subspace
recursion:

Vi+1 (K) =KNA™ (EVK+B) (39)
Wi K)=KNE™' (AW, +B) (40)
with vo—=K and w,=K

The reachability subspace is computed by

R =V.(Wa(R")) (41)

and the controllability subspace can be found by
C =R+ N(E) (42)

In the example, R =R? and C=R*.

But, for the ON supremal reachability and con-
trollability subspaces we can obtain R=R (e3)
and T=R (e3 eq).

By subspace recursion algorithm, it is not
necessary to convert the singular system to
Weierstrass form.

VII. Use of Orthogonal Functions in Singular
Systems

Considering the singular system of the form
(4), given u(t) and x(0), the solution x(t) can be
found alternatively and this method is based on
approximation of x(t) by a truncated orthogonal
series which forms the basis functions.

Let g (t), ¢1(t),... ¢ 1 (t) be the basis functions
that are orthogonal on the sampling interval and
F is a constant matrix in R™XT| then

x(t) =F&(t) &(t)={(go(t) ¢ {t) - dra(t)]"
(43)
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The examples of the orthogonal series are Walsh,
block-pulse, Laguerre, Chebychev and Hermite.
Some basis functions have the integral property
of approximation such as

LY P(a)do=Pd(t) t<B onl(aepf] (44)
Integrating eq (4a) on [a,t] eq (45) is obtained

Ex(t) —Ex(0) =A /' x(a)do+B " u(o)de
(45)

Let u(t) be approximated by another matrix H

u(t)=H® (1) (46)
Then, combining (43), (44), (46) into (45), we get
EF ¢ (1) —Ex(0) =AFP® (t) +BHP & (1) (47)

By assuming @ (t)=1, the term Ex(0) can be
formulated as

Ex(0)=EQ® (t) where Q=[x(0) 0---0) ER™"

(48)
Substituting (48) into (47), generalized
Lyapunov equation is obtained such as
EF—-EQ=AFP+BHP (49)

Here, F is solved to get an approximated version
of x(t) and moreover, there is a more convenient
form by the use of the Kronecker product in
eq (50)

Mf=d where f,dER" (50)

f and d are the i-th column of F and D, resp-
ectively. M is given by

M =A®PT7E®IT € RrI <) (51)

where® denotes the Kronecker product.
The Kronecker product is defined as follows:

Pt p:l p’;l
AQP"=|P}, P, - P (52)
P, Py - Ph

Clearly, x(t) can be solved by finding f from the
relation

(1631)
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f=M"" d (53)

In this approximation, the physical meaning of
& (t) may be interesting, but, at the risk of com-
putational inaccuracy. Moreover, matrix M may
be ill-conditioned or singular.

VIII. Discussion

As shown in the above procedures, we are able
to analyze linear singular systems and tlie solution
depends on initial conditions in order to eliminate
the impulsive behavior. A simple and two-tran-
sistor electric network with double-input and
double-output system is illustrated as a linear
singular system. And output-nulling subspaces
are derived.

If there exist some singularly perturbed
dynamic systems, they can also be controlled
optimally or adaptively by suitably chosen per-
formance criteria with stability.

A brief introduction of use of orthogonal
function in singular systems shows the flexibility
in choosing arbitrary basis functions which is
related to some physical meaning.
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