• Title/Summary/Keyword: adjoint variable

Search Result 101, Processing Time 0.022 seconds

Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation (페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석)

  • Kim, Jae-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • Using the bond-based peridynamics and the parallel computation with binary decomposition, an adjoint shape design sensitivity analysis(DSA) method is developed for the dynamic crack propagation problems. The peridynamics includes the successive branching of cracks and employs the explicit scheme of time integration. The adjoint variable method is generally not suitable for path-dependent problems but employed since the path of response analysis is readily available. The accuracy of analytical design sensitivity is verified by comparing it with the finite difference one. The finite difference method is susceptible to the amount of design perturbations and could result in inaccurate design sensitivity for highly nonlinear peridynamics problems with respect to the design. It turns out that $C^1$-continuous volume fraction is necessary for the accurate evaluation of shape design sensitivity in peridynamic discretization.

Topology Design Optimization of Nonlinear Thermo-elastic Structures (비선형 열탄성 연성구조의 위상 최적설계)

  • Moon, Min-Yeong;Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.535-541
    • /
    • 2010
  • In this paper, we have derived a continuum-based adjoint design sensitivity of general performance functionals with respect to Young' modulus and heat conduction coefficient for steady-state nonlinear thermoelastic problems. An adjoint equation for temperature and displacement fields is defined for the efficient computation of the coupled field design sensitivity. Through numerical examples, we investigated the mesh dependency of the topology optimization method in the thermoelastic problems. Also, comparing the dominant loading cases of thermal and mechanical ones, the loading dependency of topology design optimization in coupled multi-physics problems is investigated.

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

Design Optimization for the Magnetic Engine Valve Actuator (엔진 밸브 자기 구동기의 설계 최적화)

  • Soh, Hyun-Jun;Park, Soon-Ok;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.

Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS (상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석)

  • Choe, Ju-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

Design Sensitivity Analysis and Optimization of Finite Dimensional Structures by Adjoint Variable Method (의사변수법(擬似變數法)에 의한 유한차원(有限次元) 구조물(構造物)의 설계민감도(設計敏感度) 해석(解析) 및 최적화(最適化)에 관한 연구(硏究))

  • Suh, Kwan Se;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 1985
  • This paper deals with the adjoint variable method in design sensitivity analysis that is essential to the structure optimization. The method is shown to be much simpler than the conventional method in structure optimization by applying it to the optimal design of finite dimensional structures. Design sensitivity analyses and their numerical solutions for the principal constraints, i.e., displacement and stress constraints under static loads are obtained. Furthermore, it is proved that optimization can be carried out efficiently by applying the optimization algorithm. Structure optimization problems of minimizing the volumes of the truss structures(finite dimensional structures) under the appropriate boundary conditions, loading conditions and constraints are considered.

  • PDF

Simultaneous identification of moving loads and structural damage by adjoint variable

  • Abbasnia, Reza;Mirzaee, Akbar;Shayanfar, Mohsenali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.871-897
    • /
    • 2015
  • This paper presents a novel method based on sensitivity of structural response for identifying both the system parameters and input excitation force of a bridge. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The computational cost of sensitivity analyses is the main concern associated with damage detection by these methods. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. The reliable performance of the method to precisely indentify the location and intensity of all types of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. Moreover, various sources of error including the effects of noise and primary errors on the numerical stability of the proposed method are discussed.

Reliability-Based Topology Optimization Using Performance Measure Approach (성능함수법을 이용한 신뢰성기반 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, a reliability-based design optimization is developed for the topology design of linear structures using a performance measure approach. Spatial domain is discretized using three dimensional Reissner-Mindlin plate elements and design variable is taken as the material property of each element. A continuum based adjoint variable method is employed for the efficient computation of sensitivity with respect to the design and random variables. The performance measure approach of RBDO is employed to evaluate the probabilistic constraints. The topology optimizationproblem is formulated to have probabilistic displacement constraints. The uncertainties such as material property and external loads are considered. Numerical examples show that the developed topology optimization method could effectively yield a reliable design, comparing with the other methods such as deterministic, safety factor, and worst case approaches.

Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems (열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계)

  • 김민근;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF