• 제목/요약/키워드: adjoint

검색결과 357건 처리시간 0.025초

CATEGORIES OF NEARNESS FRAMES

  • JYUNG RYUN SEO;CHANG KOO LEE
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.847-854
    • /
    • 1998
  • We investigate categorical properties of the category NFrm of nearness frames and uniform homomorphisms. We introduce a concept of weakly strong nearness frames and study its permanence properties.

  • PDF

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

탄성콘크리트 댐의 모양최적설계 (Shape Optimal Design of Elastic Concrete Dam)

  • 유영면
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.9-14
    • /
    • 1985
  • 본 연구에서는 평면 변형도상태 하에서 정수압을 받는 2차원 탄성 콘크리트 댐의 단면 모양을 최적화함으로써 댐의 질량을 최소화하였다. 최적화 문제의 목적함수로는 댐의 단면적이, 제약조건으로는 주응력 제약조건과 두께 제약조건들이, 설계변수로는 모델 경계의 모양이 채택되었다. 모델 영역의 변화에 따른 설계감도해석을 위해 최적화 문제를 범함수 형태로 변환한 후 연속체 역학의 물질미분 개념과 Adjoint Variable Technique 을 활용하였고, 최적화를 위해서는 Gradient Projection Method 를 사용하였다. 연구 결과 본 연구에 적용된 이론이 효율적이고 실제 탄성구조물 설계에 광범위하게 응용될 수 있음이 밝혀졌다.

  • PDF

유체-구조 연성 문제의 형상 최적설계 (Shape Design Optimization of Fluid-Structure Interaction Problems)

  • 하윤도;김민근;조현규;조선호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석 (Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1852-1860
    • /
    • 1991
  • 본 연구에서는 연구대상을 주어진 구조물 형상에서 경계조건의 변화에 따른 현상 설계민감도, 특히 하중경계조건의 변화에 따른 구조물의 변형에 주안점을 두었다. 이 연구결과는 가공물의 지지위치에 따른 가공면의 변형정도 향상 및 접촉문제 해석등 에 응용이 가능하다. 유도된 민감도가 정확함을 입증하기 위하여 예제로서 하중경계 조건의 변화에 따른 범함수로 정의된 변형의 변화량을 예측하는 문제를 선정하였다.

엔진 밸브 자기 구동기의 설계 최적화 (Design Optimization for the Magnetic Engine Valve Actuator)

  • 소현준;박순옥;유정훈
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.584-589
    • /
    • 2009
  • As the automobile energy efficiency stands out an important matter of interest, the magnetic engine valve system receives attention. It has an advantage of no engine power leakage in opening and closing the valve. Moreover, it generates much bigger force than the piezo actuator system, so it can be a good alternative system of the cam and camshaft system. However, since the valve system is not light enough, it is necessary to make its weight reduce. In this study, topology optimization is applied to find the optimal shape of the armature in a magnetic valve system combined with the finite element analysis for the magnetic field analysis. The result is used to obtain a concept design. The adjoint variable method is employed in order to calculate the design sensitivity of the magnetic driving force in the armature component mostly to reduce the computational time during the repeated sensitivity calculation. The sequential linear programming is employed for the optimization algorithm.