• Title/Summary/Keyword: adipogenic transcription factors

Search Result 92, Processing Time 0.02 seconds

Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes (진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구)

  • Jo, Hyun Kyun;Han, Min Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • Citrus peel (CP) is used as a traditional herb with diverse beneficial pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-allergic effects. However, the anti-obesity effects of citrus peel are poorly defined. The aim of this study was to evaluate ethanol extracts of citrus peel (EECP) for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. The aim of this study was to evaluate an EECP for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with EECP significantly suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content and an accumulation of cellular triglyceride. EECP exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory elementbinding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancerbinding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Leptin. In addition, EECP treatment effectively activated the AMP-activated protein kinase (AMPK) signaling pathway; however, compound C, a specific inhibitor of AMPK, significantly reduced the EECP-induced inhibition of adipogenesis. Taken together, these results indicate EECP showed strong anti-obesity effects through the AMPK signaling pathway, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of EECP.

Effects of Hizikia fusiforme Extracts on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (톳 분획물이 3T3-L1 지방전구세포의 분화 및 지방생성의 억제에 미치는 영향)

  • Choi, Eun Ok;Kim, Hyang Suk;Han, Min Ho;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Jinah;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1399-1406
    • /
    • 2012
  • The present study was conducted to evaluate the effects of various extracts of Hizikia fusiforme on the anti-obesity effects in 3T3-L1 preadipocytes. We used H. fusiforme extracts from ethanol (EEHF), dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). Treatment with these extracts significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet content through Oil Red O staining; this effect was higher in WFHF than in other extracts. The concentrations of cellular triglyceride were also reduced in 3T3-L1 cells by exposure with these extracts, especially when compared with the controls. Treatment with 200 ${\mu}g/ml$ of WFHF and CFHF caused approximately 42.6% and 23.7% reduction, respectively. In addition, the extracts of H. fusiforme significantly reduced the expression levels of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer binding proteins ${\alpha}$ (C/$EBP{\alpha}$) and C/$EBP{\beta}$ as compared with controls. Accordingly, our data indicated that WFHF has a preeminent effect on inhibition of adipocyte differentiation among various extracts, and H. fusiforme extracts may be an ideal candidate for obesity relief.

Anti-adipogenic Activity of Cortex ulmi pumilae Extract in 3T3-L1 Preadipocytes (유근피 추출물의 3T3-L1지방전구세포의 분화 억제 효능에 관한 연구)

  • Jeong, Hyun Young;Jin, Soojung;Nam, Soo Wan;Hyun, Sook Kyung;Kim, Sung Gu;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2014
  • Cortex ulmi pumilae, the cortex of Ulmus davidiana var. japonica, has been used in traditional folk medicine for its anti-inflammatory effect. Although its various bioactivities such as anti-inflammatory, anti-microbial, and anti-cancer, have been reported, the anti-adipogenic activity of cortex ulmi pumilae remains unclarified. In the present study, we investigated the effect of cortex ulmi pumilae extract on adipocyte differentiation in 3T3-L1 preadipocytes. Treatment with cortex ulmi pumilae extract significantly reduced the formation of lipid droplets and triglyceride content in a dose-dependent manner; this is associated with an inhibition of the adipogenic transcription factors, CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). In addition, cortex ulmi pumilae extract treatment during the early stage of adipogenesis showed more efficient anti-adipogenic activity than treatment during other stages of adipogenesis. Cortex ulmi pumilae extract also inhibited cell proliferation and induced G1 arrest of 3T3-L1 cells in the early stage of adipogenesis. This was associated with upregulated expression of Cdk inhibitor p21 and downregulated expression of cyclin E and phospho-Rb, indicating that cortex ulmi pumilae extract blocks mitotic clonal expansion by cell cycle regulation. Taken together, these results suggest that cortex ulmi pumilae extract possesses anti-adipogenic activity through the inhibition of adipocyte differentiation by blocking mitotic clonal expansion.

Serum Lipids Can Convert Bovine Myogenic Satellite Cells to Adipocytes

  • Beloor, Jagadish;Kang, Hye-Kyeong;Moon, Yang-Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1519-1526
    • /
    • 2010
  • Serum lipid (SL) is a commercially available cholesterol-rich, proteinaceous compound extracted from bovine serum. Here we investigated the adipogenic transdifferentiation potential of SL on bovine myogenic satellite cells. Exposure of satellite cells to SL could generate lipid droplets on day 2, and further exposure to SL increased cytoplasmic lipid accumulation giving adipocyte morphology. The expression analysis of PPAR gamma and GPDH adipocyte markers along with Oil-red-O staining results confirmed the transdifferentiation potential of SL. When cells were treated at different concentrations (5, 10, 20, $40{\mu}l$/ml) of SL, the results indicated that even levels as low as $5{\mu}l$ SL /ml could induce transdifferentiation, and maximum induction was obtained at $20{\mu}l$ SL/ml. After treatment with SL at different concentrations the expression levels of PPAR gamma varied significantly (p<0.05), whereas the expression of other adipogenic transcription factors showed no difference, indicating that SL acts through PPAR gamma. The combined effect of SL and troglitazone proved to be the best combination for induction of transdifferentiation compared to the individual effect of SL or troglitazone. Thus, overall results clearly show that SL induces transdifferentiation of bovine myogenic satellite cells to adipocytes.

Antiadipogenic Effects of Red Radish (Raphanus sativus L.) Sprout Extract in 3T3-L1 Preadipocytes (적무 새싹 추출물의 3T3-L1 지방전구세포에서 지방합성 억제 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Cheon, Chun Jin;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1224-1230
    • /
    • 2014
  • The red radish (Raphanus sativus L.; RR) sprout is a plant of the cruciferous family. In this study, we elucidated the effect of the water extract of RR sprout (RRSE) against ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity and adipogenesis in 3T3-L1 preadipocytes. ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity was inhibited in a concentration-dependent manner by RRSE treatment. RSSE also abolished adipocyte differentiation and lipid and triglyceride accumulation without cytotoxicity in 3T3-L1 adipocytes. In addition, RRSE modulated the expression of the proteins related to adipogenic transcription factors: peroxisome proliferator-activated receptor (PPAR)${\gamma}$, sterol regulatory element-binding protein 1 (SREBP-1), and CCAT/enhancer binding protein (C/EBP)${\alpha}$. RRSE also suppressed expression of the proteins responsible for lipid synthesis, transport, and storage: adiponectin, fatty acid synthesis (FAS), perilipin, and fatty acid bind protein-4 (FABP4). This study showed that RRS treatment has the potential to inhibit obesity by controlling the expression of adipogenic transcription factors and adipogenic proteins.

Inhibition of Adipocyte Differentiation and Adipogenesis by Aged Black Garlic Extracts in 3T3-L1 Preadipocytes (흑마늘 추출물에 의한 3T3-L1 지방전구세포의 분화 및 adipogenesis 억제에 관한 연구)

  • Park, Jung-Ae;Park, Cheol;Han, Min-Ho;Kim, Byung-Woo;Chung, Yoon-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.720-728
    • /
    • 2011
  • Garlic (Allium sativum) has been used as a source food as well as a traditional folk medicine ingredient since ancient times. Aged black garlic is a type of fermented garlic and is expected to have stronger anticancer and antioxidant activities than raw garlic. However, the mechanisms of their inhibitory effects on adipocyte differentiation and adipogenesis are poorly understood. In the present study, the effects and mechanisms of water extracts of raw garlic (WERG) and aged black garlic (WEABG) on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes were investigated. Treatment with WEABG significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining, however WERG had no such effect. In addition, WEABG reduced accumulation of cellular triglyceride, which is associated with a significant inhibition of key pro-adipogenic transcription factors including peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ (C/EBP${\alpha}$) and C/EBP${\beta}$. Taken together, these results provide important new insight that aged black garlic might inhibit adipogenesis by suppressing the pro-adipogenic transcription factors in 3T3-L1 preadipocytes, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of aged black garlic.

The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling

  • Choi, Bong-Hyuk;Kim, Yu-Hee;Ahn, In-Sook;Ha, Jung-Heun;Byun, Jae-Min;Do, Myoung-Sool
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 2009
  • In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate mediator of this signaling. We studied this hypothesis by western blot analysis, but our results showed that berberine has no effect on the phosphorylations of STAT-3 and ERK which have important roles on leptin signaling. These results led us to conclude that the anti-inflammatory effect of berberine is not mediated by the inhibition of leptin signal transduction. Moreover, we have found that berberine down-regulates NF-${\kappa}B$ signaling, one of the inflammation-related signaling pathway, through western blot analysis. Taken together, the anti-inflammatory effect of berberine is not mediated by leptin, and berberine induces anti-inflammatory effect independent of leptin signaling.

Epigenetic role of nuclear S6K1 in early adipogenesis

  • Yi, Sang Ah;Han, Jihoon;Han, Jeung-Whan
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.401-402
    • /
    • 2016
  • S6K1 is a key regulator of cell growth, cell size, and metabolism. Although the role of cytosolic S6K1 in cellular processes is well established, the function of S6K1 in the nucleus remains poorly understood. Our recent study has revealed that S6K1 is translocated into the nucleus upon adipogenic stimulus where it directly binds to and phosphorylates H2B at serine 36. Such phosphorylation promotes EZH2 recruitment and subsequent histone H3K27 trimethylation on the promoter of its target genes including Wnt6, Wnt10a, and Wnt10b, leading to repression of their expression. S6K1-mediated suppression of Wnt genes facilitates adipogenic differentiation through the expression of adipogenic transcription factors PPARγ and Cebpa. White adipose tissues from S6K1-deficient mice consistently exhibit marked reduction in H2BS36 phosphorylation (H2BS36p) and H3K27 trimethylation (H3K27me3), leading to enhanced expression of Wnt genes. In addition, expression levels of H2BS36p and H3K27me3 are highly elevated in white adipose tissues from mice fed on high-fat diet or from obese humans. These findings describe a novel role of S6K1 as a transcriptional regulator controlling an epigenetic network initiated by phosphorylation of H2B and trimethylation of H3, thus shutting off Wnt gene expression in early adipogenesis.

Inhibitory Effects of Allium senescens L. Methanol Extracts on Reactive Oxygen Species Production and Lipid Accumulation during Differentiation in 3T3-L1 Cells (두메부추(Allium senescens L.) 메탄올 추출물의 지방세포 내 활성산소종 생성 및 지질축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Allium senescens L. is perennial plant of the Liliaceae family that grows throughout Korea. In this study, we investigated the effect of Allium senescens L. methanol extracts on reactive oxygen species (ROS) production and lipid accumulation during adipogenesis. Our results indicated that 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of Allium senescens L. methanol extracts increased in a dose-dependent manner. Allium senescens L. methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, Allium senescens L. methanol extracts inhibited the mRNA expression of the pro-oxidant enzyme, such as G6PDH and lead to a reduction in the mRNA levels of the transcription factors, such as sterol regulatory element binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding proteins ${\alpha}$. These results indicate that Allium senescens L. methanol extracts inhibit adipogenesis by modulating ROS production associated with ROS-regulating genes and directly down-regulating adipogenic transcription factors.

Inhibition of Differentiation and Anti-Adipogenetic Effect of the Salvia plebeia R. Br. Ethanol Extract in Murine Adipocytes, 3T3-L1 Cells (배암차즈기 에탄올 추출물의 3T3-L1 지방전구세포 분화 억제 및 지방 축적 저해 효과)

  • Kim, Sung-Ok;Kim, Mi-Ryeo;Hwang, Kyung-A;Park, No-Jin;Jeong, Ji-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.401-408
    • /
    • 2017
  • Salvia plebeia R. Br. (Lamiaceae) has been used in folk medicines in Asian countries, including Korea and China, to treat inflammatory diseases. The focus of our research was on the anti-adipogenic activity of ethanol extract from Salvia plebeia R. Br. (SPE) in 3T3-L1 adipocytes. This study investigated inhibition of differentiation and lipogenesis upon SPE treatment in 3T3-L1 cells. The results reveal that SPE at non-cytotoxic concentration significantly suppressed triglyceride accumulation and reduced expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein-alpha, and sterol regulatory element-binding protein as adipogenic transcription factors in 3T3-L1 adipocytes compared to non-treated control cells. Inducible phosphorylation of AMP-activated protein kinase, acetyl CoA carboxylase, and hormone-sensitive lipase as well as carnitine palmitoyltransferase-1 mRNA expression increased upon SPE treatment, which suppressed expression of fatty acid synthase. In conclusion, these results demonstrate that SPE can inhibit expression of adipogenic genes in 3T3-L1 adipocytes. Our study suggests that SPE has potential anti-obesity effects and is a novel therapeutic functional agent with anti-adipogenic activity via reduction of lipogenesis.