Browse > Article
http://dx.doi.org/10.5713/ajas.2010.10062

Serum Lipids Can Convert Bovine Myogenic Satellite Cells to Adipocytes  

Beloor, Jagadish (Department of Animal Science and Biotechnology, Jinju National University)
Kang, Hye-Kyeong (Department of Animal Science and Biotechnology, Jinju National University)
Moon, Yang-Soo (Department of Animal Science and Biotechnology, Jinju National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.11, 2010 , pp. 1519-1526 More about this Journal
Abstract
Serum lipid (SL) is a commercially available cholesterol-rich, proteinaceous compound extracted from bovine serum. Here we investigated the adipogenic transdifferentiation potential of SL on bovine myogenic satellite cells. Exposure of satellite cells to SL could generate lipid droplets on day 2, and further exposure to SL increased cytoplasmic lipid accumulation giving adipocyte morphology. The expression analysis of PPAR gamma and GPDH adipocyte markers along with Oil-red-O staining results confirmed the transdifferentiation potential of SL. When cells were treated at different concentrations (5, 10, 20, $40{\mu}l$/ml) of SL, the results indicated that even levels as low as $5{\mu}l$ SL /ml could induce transdifferentiation, and maximum induction was obtained at $20{\mu}l$ SL/ml. After treatment with SL at different concentrations the expression levels of PPAR gamma varied significantly (p<0.05), whereas the expression of other adipogenic transcription factors showed no difference, indicating that SL acts through PPAR gamma. The combined effect of SL and troglitazone proved to be the best combination for induction of transdifferentiation compared to the individual effect of SL or troglitazone. Thus, overall results clearly show that SL induces transdifferentiation of bovine myogenic satellite cells to adipocytes.
Keywords
Transdifferentiation; Bovine Satellite Cells; Serum Lipids; Myocytes; Adipocytes;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Stahl, A., J. G. Evans, S. Pattel, D. Hirsch and H. F. Lodish. 2002. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2:477-488.   DOI   ScienceOn
2 Teboul, L., D. Gaillard, L. Staccini, H. Inadera, Z. E. Amri and P.A. Grimaldi. 1995. Thiazolidinediones and fatty acid convert myogenic cells into adipose-like cells. J. Biol. Chem. 270: 28183-28187.   DOI
3 Tosh, D. and J. M. M. Slack. 2002. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 3:187-194.   DOI   ScienceOn
4 Van Barneveld, R. J. 2003. Modern pork production-Balancing efficient growth and feed conversion with product quality requirements and consumer demands. Asia Pac. J. Clin. Nutr. 12:(Suppl.) S31.
5 Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A.Adam, A. B. Lassar and A. D. Miller. 1989. Activation of muscle- specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA. 86:5434-5438.   DOI
6 Wu, Z., Y. Xie, N. L. Buchner and S. R. Farmer. 1996. Induction of peroxisome proliferator activated receptor $\gamma$ during the conversion of 3T3 fibroblasts into adipocytes is mediated by $C/EBP{\beta}$, $C/EBP{\delta}$, and glucocorticoids. Mol. Cell. Biol. 16: 4128-4136.
7 Yeh, W. C., Z. Cao, M. Classon and S. L. Mcknight. 1995.Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP-family of leucine zipper proteins. Genes Dev. 9:168-181.   DOI   ScienceOn
8 Hu, E., P. Tontonoz and B. M. Spiegelman. 1995.Trandifferentiation of myoblasts by the adipogenic transcription factor PPAR-$\gamma$ and C/EBP $\alpha$. Proc. Natl. Acad. Sci. USA. 92:9856-9860.   DOI
9 Li, W. C., W. Y. Yu, J. M. Quinlan, Z. D. Burke and D. Tosh. 2005. The molecular basis of transdifferentiation. J. Cell. Mol. Med. 9:569-582.   DOI
10 Lee, K., H. Kim, Q. Li, X. Chi, C. Ueta, T. Komori, J. M. Wozney,E. Kim, J. Choi, H. Ryoo and S. Bae. 2000. Runx2 is a common target of transforming growth factor ${\beta}1$ and bone morphogenetic protein 2, and cooperation between Runx2 and Smad 5 induces osteoblast specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20:8783-8792.   DOI
11 MacDougald, O. A. and M. D. Lane. 1995. Adipocyte differentiation. When precursors area also regulators. Curr. Biol. 5:618-621.   DOI   ScienceOn
12 McKnight, S. L., M. D. Lane and S. Gluecksohn-Waelsch. 1989. Is CCAAT/enhancer-binding protein a central regulator of energy metabolism. Genes Dev. 3:2021-2024.   DOI
13 Novakofski, J. 2004. Adipogenic: Usefulness of in vitro and in vivo experimental models. J. Anim. Sci. 82:905-915.
14 Seale, P., L. A. Sabourin, A. G. Gabardo, A. Mansouri, P. Gruss and M. A. Rudnicki. 2000. Pax-7 is required for the specification of myogenic satellite cells. Cell 102:777-786.   DOI   ScienceOn
15 Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, S. H.Lee, H. J. Lee, H. J. Park and H. Y. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85:1126-1135.   DOI   ScienceOn
16 Soret, B., H. J. Lee, E. Finley, S. C. Lee and R. G. Vernon. 1999.Regulation of differentiation of sheep subcutaneous and abdominal preadipocytes in culture. J. Endocrinol. 161:517-524.   DOI   ScienceOn
17 Asakura, A., M. A. Rudnicki and M. Komaki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:1432-1436.
18 Emerson, C. P. and Skeletal Myogenesis. 1993. Genetics and embryology to the fore. Curr. Opin. Genet. Dev. 3:265-274.   DOI   ScienceOn
19 Ban, A., K. Yamanouchi, T. Matsuwaki and M. Nishihara. 2008. In vivo gene transfer of PPARgamma is insufficient to induce adipogenesis inn skeletal muscle. J. Vet. Med. Sci. 70:761-767.   DOI   ScienceOn
20 Dunshea, F. R., D. N. D’Souza, D. W. Pethick, G. S. Harper and R.D. Warner. 2005. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Sci. 71:8-38.   DOI   ScienceOn
21 Erding, H. U., P. Tontonoz and B. M. Spiegelman. 1995.Transdifferentiation of myoblasts by the adipogenic transcription factor $PPAR{\gamma}$and $C/EBP{\alpha}$. Proc. Natl. Acad. Sci. USA. 92:9856-9860.   DOI
22 Gondret, J. F. and B. Lebret. 2002. Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. J. Anim. Sci. 80:3184-3193.
23 Grant, A. C., Ortiz-Colòn, M. E. Doumit and D. D. Buskirk. 2008.Optimization of in vitro conditions for bovine subcutaneous and intramuscular preadipocyte differentiation. J. Anim. Sci. 86:73-82.
24 Hausman, G. J., S. P. Poulos, T. D. Pringle and M. J. Azain. 2008.The influence of thaizolidinediones on adipogenesis in vitro and in vivo: Potential modifiers of intramuscular adipose tissue deposition in meat animals. J. Anim. Sci. 86:E236- E243.
25 Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H.Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G.Lee, K. Kazuo, S. G. Roh and S. Sasaki. 2006. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR4. Endocrinology 146:5092-5099.