• Title/Summary/Keyword: adhesion reliability

Search Result 104, Processing Time 0.027 seconds

Study of Chip On Glass Bonding Method using Diode Laser (다이오드 레이저를 이용한 Chip On Glass 접합에 관한 연구)

  • Seo M.H.;Ryu K.H.;Nam G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.423-426
    • /
    • 2005
  • A new chip on glass(COG) technique by making use of a high power diode laser for LCD driver IC packaging of LCD has been developed. A laser joining technology of the connection of IC chip to glass panel has several advantages over conventional method such as hot plate joining: shorter process time, high reliability of joining, and better fur fine pitch joining. The reach time to cure temperature of ACF in laser joining is within 1 second. In this study, results show that the total process time of joining is reduced by halves than that of conventional method. The adhesion strength is mainly 100-250 N/cm. It is confirmed that the COG technology using high power diode laser joining can be applied to advanced LCDs with a fine pitch.

  • PDF

A Method of Measuring Wood Failure Percentage of Wood Specimens Bonded with Melamine-Urea-Formaldehyde Resins Using I mage Analysis

  • KIM, Minseok;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.274-282
    • /
    • 2021
  • Transparent and colorless melamine-urea-formaldehyde (MUF) resins make it difficult to identify the area of wood failure percentage (WFP) in the fracture surface of bonded wood specimens. Therefore, in this study, we develop a method of measuring WFP after the adhesion strength measurement of MUF resins under shear stress. The fractured wood surface of b lock shear strength (BSS) specimens bonded with cold-setting MUF resins at three melamine contents (20%, 30%, and 40%) was marked black, and then, WFP was accurately measured via image analysis. WFP values measured using this method consistently increased with BSS as the melamine content increased, showing the reliability of this new method. The results suggested that this new method is useful and reliable for measuring the WFP of the fracture surface of wood specimens bonded with colorless adhesives such as urea-formaldehyde, MUF, and melamine-formaldehyde resins.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process (TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사)

  • Lee, H.M.;Lee, J.G.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

Measurement of Adhesion Strength and Nanoindentation of Metal Interconnections of Al/Ni and TiW/Ni Layers Formed on Glass Substrate (유리기판 위에 형성된 Al/Ni 및 TiW/Ni 다층 금속배선막의 계면 접합력 및 나노압입특성 평가)

  • Joe, Chul Min;Kim, Jae Ho;Hwang, So Ri;Yun, Yeo Hyeon;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1116-1122
    • /
    • 2010
  • Metal interconnections of multilayer Al/Ni and TiW/seed-Ni/Ni were formed on glass, and the adhesion strength and nanoindentation response of the composite layers were evaluated. The Al/Ni multilayer was formed by an anodic bonding of glass to Al and subsequent electroless plating of Ni, while the TiW/Ni multilayer was fabricated by sputter deposition of TiW and seed-Ni onto glass and electroless plating of Ni. Because of the diffusion of aluminum into glass during the anodic bonding, anodically bonded glass/Al joint exhibited greater interfacial strength than the sputtered glass/TiW one. The Al/Ni on glass also showed excellent resistance against delamination by bending deformation compared to the TiW/seed-Ni/Ni on glass. From the nanoindentation experiment of each metal layer on glass, it was found that the aluminum layer had extremely low hardness and elastic modulus similar to the glass substrate and played a beneficial role in the delamination resistance by lessening stress intensification at the joint. The indentation data of the multilayers also supported superior joint reliability of the Al/Ni to glass compared to that of the TiW/seed-Ni/Ni to glass.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Electrics and Noise Performances of AlGaN/GaN HEMTs with/without In-situ SiN Cap Layer (In-situ SiN 패시베이션 층에 따른 AlGaN/GaN HEMTs의 전기적 및 저주파 잡음 특성)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.60-63
    • /
    • 2023
  • The AlGaN/GaN heterostructure has high electron mobility due to the two-dimensional electron gas (2-DEG) layer, and has the characteristic of high breakdown voltage at high temperature due to its wide bandgap, making it a promising candidate for high-power and high-frequency electronic devices. Despite these advantages, there are factors that affect the reliability of various device properties such as current collapse. To address this issue, this paper used metal-organic chemical vapor deposition to continuously deposit AlGaN/GaN heterostructure and SiN passivation layer. Material and electrical properties of GaN HEMTs with/without SiN cap layer were analyzed, and based on the results, low-frequency noise characteristics of GaN HEMTs were measured to analyze the conduction mechanism model and the cause of defects within the channel.

A Study of Post Electrode Formation by Microwave Sintering in LTCC Substrate (마이크로파 소결법을 이용한 LTCC 기판 Post 전극 형성에 관한 연구)

  • Kim, Yong-Suk;Lee, Taek-Jung;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Sung-Yeol;Oh, Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2007
  • This study is focused on the effect of the surface properties for the post electrode, which is used in pad formation consisted of SMT such as IC, passive component, combined with fired LTCC substrate, We carried out the surface microstructure of sintered electrode and the basic reliability evaluations with sample fired by microwave sintering to solve the problems occurred in post electrode by electric sintering. We evaluated surface densification status of post electrode according to various conditions of microwave sintering. In additions, it is obtained strong effect on blister improvement of post electrode because of over-sintering and the insufficient out gas in bum out process. As a result of adhesion strength, we confirmed $44.3N/mm^2$ in microwave sintering and $34.5N/mm^2$ in electric sintering, respectively. This result will be used for the basic reliability test. Finally, microwave sintering seems to be economic in process time with 30 min compared to electric sintering with 10 hr. In terms of Mass production and efficiency, microwave sintering are excepted to be higher than electric sintering.

  • PDF

Synthesis and Characterization of UV-curable Aliphatic Epoxy Acrylate (자외선 경화형 지방족 에폭시 아크릴레이트의 합성 및 특성분석)

  • Kim, Young Chul;Lee, Byung-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • UV-curable aliphatic epoxy acrylates were prepared by the reaction of glycerol diglycidyl ether (GDE) with 2-carboxyethyl acrylate (2-CEA) or 2-hydroxyethyl acrylate (2-HEA). The structures of the epoxy acrylates were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR and the yield was obtained by prep-LC. The UV- and the thermal-curing behaviors of the product were investigated using photo-DSC and DSC, respectively. The reactivity of 2-CEA was higher than 2-HEA and the yield of the product (GEA-C) which was prepared using 2-CEA was about 83%. The maximum UV-curing time ($T_{max}$) of the GEA-C contained non-reactive components and by-product was about 10 seconds. The GEA-C showed low color difference (${\Delta}E^*$), low viscosity, and good thermal stability - its value was 2.51, 192 cps, and $299^{\circ}C$ (at 5% weight loss), respectively. The activation energies ($E_a$) of thermal-curing reaction calculated from Kissinger and Ozawa-Flynn-Wall method were 91~92 kJ/mol.

  • PDF

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.