• Title/Summary/Keyword: active compound

Search Result 968, Processing Time 0.043 seconds

HPLC analytical method validation of Aralia elata extract as a functional ingredients (두릅 추출물의 기능성 원료 표준화를 위한 HPLC 분석법 검증)

  • Ahn, Eun-Mi;Choi, Song-Am;Choi, Ji-Young
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.795-801
    • /
    • 2017
  • Aralia elata Seemann (AE) has long been used as a folk medicine for the treatment of various diseases including diabetes mellitus, anti-arthritic, and anti-gastric ulcer agent in Korea, Japan, and China. This study was performed to establish a simple and reliable HPLC/UV analytical method for determination of most active anti-hypertensive compound, a 3-O-${\alpha}$-L-rhamnopyranosyl($1{\rightarrow}$2)-${\alpha}$-L-arabinopyranosyl hederagenin 28-O-${\beta}$-D-xylopyranosyl($1{\rightarrow}6$)-${\beta}$-D-glucopyranosylester (HE) for the standardization of the shoot extract of AE as a health functional food ingredient. The quantitative analytical method of HE was optimized by HPLC analysis using reverse-phase C18 column at $40^{\circ}C$ with $H_2O$ and acetonitrile (70:30, v/v) as an isocratic mobile phase at a flow rate of 1.0 mL/min and detection wavelength of UV 205 nm. This HPLC/UV analytical method showed good specificity and high linearity in the tested range of 0.03125-2.0mg/ml with excellent coefficient of determination ($R^2$) of 0.9999. The limit of detection and limit of quantification were $12.0{\mu}g/mL$ and $36.5{\mu}g/mL$, respectively. Relative standard deviation (RSD) values of data from intra- and inter-day precision were less than 0.2% and 0.1%, respectively. These results indicate that the established HPLC/UV analytical method is very simple, specific, precise, accurate, and reproducible and thus can be useful for the quantitative analysis of HE as a functional anti-hypertensive compound in AE extract.

Antioxidative Constituents from Fruit of Sorbaria sorbifolia var. stellipila MAX. (쉬땅나무(Sorbaria sorbifolia var. stellipila MAX.) 열매의 항산화 활성 성분)

  • Park, Jong-Hyuk;Kwon, Jin-A;Yang, Yoon-Jung;Han, Hyo-Sang;Han, Min-Woo;Lee, Young-Il;Kim, In-Su;Lee, Jong-Ill;Kang, Se-Chan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.337-342
    • /
    • 2011
  • The purpose of this study was to evaluated the antioxidative constituents and their activities of the 80% methanolic extracts from fruit of Sorbaria sorbifolia var. stellipila MAX. The isolation of active compound was performed in three steps: solvent partition, open column chromatography, and high-performance liquid chromatography (HPLC). The solvent fractions were tested for their antioxidant activities by oxygen radical absorbance capacity (ORAC). The antioxidant activity of 80% methanolic extracts by various solvent partitions was in the order of 80% MeOH (1.68 ${\pm}$ 0.027), n-hexane (1.02 ${\pm}$ 0.036), $CH_2Cl_2$ (0.95 ${\pm}$ 0.025), EtOAc (1.98 ${\pm}$ 0.065), n-BuOH (1.94 ${\pm}$ 0.054) and Water (1.28 ${\pm}$ 0.032). Therefore, the results indicated that the potential antioxidant activities and functional values were observed significantly at EtOAc fraction from fruit of S. sorbifolia, flavonoid compound isolated.

Isolation and Purification of an Antitumor Metabolite from Alternaria brassicicola SW-3, the Cause of Brassica Black Leaf Spot Disease. (Phytopathogenic fungus Alternaria brassicicola SW-3가 생산하는 항암활성 물질의 분리 정제)

  • 나여정;이방숙;남궁성건;정동선
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2002
  • An antitumor substance was purified from the culture filtrate of phytopathogenic fungus Alternaria brassicicola SW-3 isolated from soil of a chinese cabbage patch, and its characteristics were investigated. Antitumor activity of A. brassicicola SW-3 was measured by MTT assay. The cytotoxic activity against human cancer cell line was detected in the culture filtrate of A. brassicicola SW-3, but no activity found in mycelium. Antitumor substance was isolated from the culture broth by ethyl acetate extraction and purified by silica gel column chromatography. Structure of the purified compound was analyzed by the instrumental analysis such as $^1$H-NMR, $^{13}$ C-NMR and IR spectroscopy. The purified fungal metabolite of an A. brassicicola SW-3, consists of 11 carbon chain with two hydroxyl groups and two epoxides which is identical to depudecin. The $IC_{50}$/ values of the active compound identified as depudecin were $69\mu$g/mL and $57\mu$g/mL against mouse melanoma B16BL6 cell line, and human hepatoma SK-HEP1 cell line, respectively.

Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana

  • Kim, Mi Seon;Lee, Yunmi;Sung, Gi-Ho;Kim, Ji Hye;Park, Jae Gwang;Kim, Han Gyung;Baek, Kwang Soo;Cho, Jae Han;Han, Jaegu;Lee, Kang-Hyo;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent.

Study of Degradation of Bisphenol A with $TiO_2$ Powder in CPC System (CPC (Compound Parabolic Collector) 내 이산화티탄을 이용한 비스페놀 A (Bisphenol A)의 분해에 관한 연구)

  • Hwang, An-Na;Park, Myung-Hee;Lim, Beom-Guk;Khim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.107-112
    • /
    • 2011
  • In this study, photocatalytic degradation and mineralization of bisphenol A (BPA), which has been listed as one of endocrine disruptors, were carried out in the CPC system using $Tio_2$ slurry and UVA irradiation. The degradation efficiency has been investigated under the controlled parameters including initial concentration (5, 10, 20 mg/L), dosage of $Tio_2$ (0.1, 0.5, 1.0 g/L), UVA power (0, 80, 120 W) and temperature (0, 20, 30). At 10mg/L of initial concentration, BPA was degraded above 80% after 10min, BPA were degraded 97% and 49% at 20 mg/L and 30 mg/L, respectively. At $Tio_2$ dosage was 0.1 and 0.5 g/L, the degradations of BPA showed similar trend and were about 70% after 1 hr, and the degradation of BPA was above 80% after 30 min at 1 g/L of $Tio_2$ dosage. The increase of degradation seem to be due to the increase in the total surface area, namely number of active sites, available for the photocatalytic reaction as the dosage of photocatalyst increased. When the UVA power was 120 W, BPA was degraded rapidly above 60% after 10min of reaction time. To investigate the effect of temperature, carried out experiment controlled temperature, there were no significant differences depending on the temperature. After 1hr, the degradation of BPA were 46%, 67%, and 69% at 10, 20 and $30^{\circ}C$.

Effects of Nitrogen Fertilization on Leaf Yield and Pyranocurmarine Accumulation in Angelica gigas Nakai

  • Seo, Young-Jin;Kim, Jong-Su;Park, Kee-Choon;Park, Chun-Geun;Ahn, Young-Sup;Cha, Seon-Woo;Kang, Yoon-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Angelica gigas Nakai is one of the most widely used herbal medicines and is known to have many pharmaceutical effects including an anti-oxidant, anti-cancer etc. This study was carried out to investigate an effect of fertilization on leaf yield, production of dry-matter and accumulation of pyranocurmarine compounds such as decursin (DE) and decursinol angelate (DA) in Angelica gigas Nakai. Effect of fertilization was determined from response surface regression equation composing of 2 by 3 factorial arrangement of urea, sodium dihydrogen phosphate and potassium chloride. Yield of leaf in Angelica gigas Nakai significantly increased until 100 days after transplanting. Production of leaf also tended to increase with increasing nitrogen fertilization. Model of regression equation showed that leaf production depended upon nitrogen ($Pr>{\mid}t{\mid}$ : 0.087, 0.256 and 0.079). Also, statistical results between nitrogen application level and production of dry-matter showed significant relationship (p<0.05) and contents of dry-matter was highest in 10 kg 10a-1 treatment on 24 Sep. Active compound isolated and purified from leaf and root of Angelica gigas Nakai was identified as DE and DA by gas chromatograph-mass spectrophotometry (GC-MS). Concentration of DA as prevalent compound in leaf was highest on 20 Aug. but decreased on 24 Sep. Amount of DE and DA accumulated in Angelica gigas Nakai significantly increased with growth stages and nitrogen level. The result of our investigation imply that nitrogen fertilization is important factor for production of leaf and accumulation of pyranocurmarine in Angelica gigas Nakai as a medicinal/food materials.

Current Status and Prospects for the Hemp Bioindustry (대마 생물산업의 현황과 전망)

  • Sohn, Ho-Yong;Kim, Mun-Nyeon;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.677-685
    • /
    • 2021
  • Cannabis sativa L. belongs to the Cannabaceae family and is an annual herbaceous flowing plant. The plants can be classified into narcotic marijuana and nonnarcotic hemp. Different parts of C. sativa L. have been used as food, medicine, cosmetics, fiber and textile. However, the use of leaf, flower, and seed of C. sativa L was forbidden in Korea in January 1977 as a result of the Cannabis Control Act due to the narcotic properties. The plant's mature stems have limited uses for the production of fiber and sheets. Recently, various cannabinoids, terpenes and essential fatty acids were identified from C. sativa L., and their safety and useful bio-activities, such as neuroprotective, anti-inflammation, antithrombosis, antiepileptic, and antimicrobial activities, and the relief of pain, have been highlighted. Furthermore, the process of reduction of tetrahydrocannabinol, a representative narcotic compound, and the isolation of cannabidiol, a nonnarcotic active compound in C. sativa L., have been determined. These findings resulted in the legalization of C. sativa L. in Korea for medical use in December 2018 and the exclusion of C. sativa L. from the narcotic list of the UN Commission on Narcotics Drugs (UNCND) in December 2020. Therefore, developments of various high-value added products have commenced worldwide. Additionally, in 2021, the Korean government deregulated special zones based on hemp. In this study, the current status and the prospect of the hemp industry, as well as essential techniques for developing new hemp products, are provided for the activation of the Korea Green-Rush.

Synthesis and Structural Characterization of β-Carboline Compounds (β-카볼린 화합물의 합성 및 구조분석)

  • Byeon, Hong-Ju;Han, Min-Hui;Moon, Gi-Seong;Jung, Kyung-Hwan;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.676-684
    • /
    • 2019
  • The Pictet-Spengler reactions have widely known for the organic synthesis or biosynthesis of biologically active compounds, tetrahydro-${\beta}$-carbolines. We have developed the simple and efficient synthetic method for the synthesis of ${\beta}$-carbolines in water. Their chemical structures were characterized by nmr and UPLC/MS/QTOF. Calculated masses of compound 1 ($C_{17}H_{17}N_2$ 249.1392), 2 ($C_{17}H_{23}N_2$ 255.1861), 3 ($C_{19}H_{21}N_2O_3$ 325.1552) and 4 ($C_{19}H_{19}N_2O$ 279.1497) were almost identical with the detected masses of compound 1 (249.1315), 2 (255.1789), 3 (325.1460) and 4 (279.1364) respectively. Those synthesized four compounds showed strong antibiotic activity against the common E. coli.

Anti-inflammatory and Anti-oxidative Constituents from the Extract of Cinnamomum yabunikkei Leaves (생달나무 잎 추출물 유래 항염 및 항산화 활성 성분)

  • Kim, So Hee;Kim, Jung Eun;Lee, Nam Ho
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • In this study, the extract of Cinnamomum yabunikkei leaves were investigated for the anti-inflammatory and anti-oxidative activities and their active constituents were identified. In the anti-inflammatory tests using LPS-stimulated RAW 264.7 cells, the ethyl acetate (EtOAc) fraction inhibited the production of nitric oxide (NO) without causing cell toxicity. In addition, the EtOAc fraction reduced expression of iNOS protein and production of pro-inflammatory cytokines (TNF-α, IL-1β). Upon the anti-oxidative studies by DPPH and ABTS+ radicals, potent radical scavenging activities were observed in the EtOAc fraction. Five phytochemicals were isolated from the extract of C. yabunikkei leaves; (4S,5R)-4-hydroxy-5-isopropyl-2-methylcyclohex-2-enone (1), methoxy-(3,5-dimethoxy-4-hydroxyphenyl)ethanediol (2), afzelin (3), nicotiflorine (4) and narcissin (5). As far as we know, compounds 1-5 were isolated for the first time from this plant. In the anti-inflammatory tests for the isolates, compound 1, 3, 4 and 5 were determined to decrease NO production without causing cell toxicity. Furthermore, compound 1 reduced expression of iNOS protein and exhibited potent inhibitory activities of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Based on these results, it was suggested that the extract and isolated compounds from C. yabunikkei leaves could be potentially applicable as natural source for pharmaceutical and/or cosmetic ingredients.

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes (2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과)

  • Lee, Hyun-Ah;Han, Ji⁃Sook
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2021
  • Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.