Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.729

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes  

Lee, Hyun-Ah (Department of Food Science and Nutrition, Pusan National University)
Han, Ji⁃Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 729-735 More about this Journal
Abstract
Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.
Keywords
2,7-phloroglucinol-6,6-bieckol; 3T3-L1 adipocytes; Ecklonia cava; glucose uptake; insulin signaling pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carvalho, E., Jansson, P. A., Nagaev, I., Wenthzel, A. M. and Smith, U. 2001. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB. J. 15, 1101-1103.   DOI
2 Kong, C. S., Kim, J. A., Yoon, N. Y. and Kim, S. K. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food Chem. Toxicol. 47, 1653-1658.   DOI
3 Krook, A., Wallberg-Henriksson, H. and Zierath, J. R. 2004. Sending the signal: molecular mechanisms regulating glucose uptake. Med. Sci. Sports Exerc. 36, 1212-1217.   DOI
4 Lee, J. Y., Ko, J. Y., Oh, J. Y., Kim, C. Y., Lee, H. J., Kim, J. I. and Jeon, Y. J. 2014. Preparative isolation and purification of phlorotannins from Ecklonia cava using centrifugal partition chromatography by one step. Food Chem. 1, 433-437.
5 Lee, H. A., Lee, J. H. and Han, J. S. 2018. 2,7"-Phloroglucinol-6,6'-bieckol protects INS-1 cells against high glucose-induced apoptosis. Biomed. Pharmacother. 103, 1473-1481.   DOI
6 Musi, N. 2006. AMP-activated protein kinase and type 2 diabetes. Curr. Med. Chem. 13, 583-589.   DOI
7 Ducluzeau, P. H., Fletcher, L. M., Vidal, H., Laville, M. and Tavare, J. M. 2002. Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab. 28, 85-92.
8 Kang, S. M., Heo, S. J., Kim, K. N., Lee, S. H. and Jeon, Y. J. 2012. Isolation and identification of new compound, 2, 7"-phloroglucinol-6, 6'-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J. Funct. Foods 4, 158-166.   DOI
9 Conejo, R, Valverde, A. M, Benito, M. and Lorenzo, M. 2001. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-κB and downregulation of AP-1 activities. J. Cell Physiol. 186, 82-94.   DOI
10 Czech, M. P. and Corvera, S. 1999. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274, 1865-1868.   DOI
11 Kang, M. C., Wijesinghe, W. A. J. P., Lee, S. H., Kang, S. M., Ko, S. C., Yang, X., Kang, N. L, Jeon, B. T, Kim, J. I., Lee, D. H. and Jeon, Y. J. 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food Chem. Toxicol. 53, 294-298.   DOI
12 Rosen, E. D. and Spiegelman, B. M. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847-853.   DOI
13 Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S. and Frevert, E. 2006. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403-416.   DOI
14 Kang, C. K., Jin, Y. B., Lee, H. K., Cha, M. J., Sohn, E. T., Moon, J. H., Park, C. W., Chun, S. H., Jung, E. S., Hong, J. S., Kim, S. B., Kim, J. S. and Kim, E. K. 2010. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem. Toxicol. 48, 509-516.   DOI
15 Kohn, A. D., Summers, S. A., Birnbaum, M. J. and Roth, R. A. 1996. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372-31378.   DOI
16 Fido, R. J., Tatham, A. S. and Shewry, P. R. 1995. Western blotting analysis. Plant Gene Transfer and Expression Protocols 49, 423-437.   DOI
17 Jeon, H. J., Yoon, K. Y., Koh, E. J., Choi, J., Kim, K. J., Choi, H. S. and Lee, B. Y. 2015. Seapolynol and dieckol improve insulin sensitivity through the regulation of the PI3K pathway in C57BL/KsJ-db/db mice. J. Food Nutr. Res. 3, 648-652.   DOI
18 Zhang, J., Tiller, C., Shen, J., Wang, C., Girouard, G. S., Dennis, D., Barrow, C. J., Miao, M. and Ewart, H. S. 2007. Antidiabetic properties of polysaccharide- and polyphenol-enriched fractions from the brown seaweed Ascophyllum nodosum. Can. J. Physiol. Pharmacol. 85, 1116-1123.   DOI
19 Artan, M., Li, Y., Karadeniz, F., Lee, S. H., Kim, M. M. and Kim, S. K. 2008. Anti-HIV-1 activity of phloroglucinol derivative, 6,6-bieckol, from Ecklonia cava. Bioorg. Med. Chem. 16, 7921-7926.   DOI
20 Piper, R. C., Hess, L. J. and James, D. E. 1991. Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am. J. Physiol. 260, 570-580.
21 Ramachandran, V. and Saravanan, R. 2015. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum. Exp. Toxicol. 34, 884-893.   DOI
22 Salt, I. P., Connell, J. M. and Gould, G. W. 2000. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49, 1649-1656.   DOI
23 Hers, H. G. 1990. Mechanisms of blood glucose homeostasis. J. Inherit. Metab. Dis. 13, 395-410.   DOI
24 Saltiel, A. R. and Kahn, C. R. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.   DOI
25 Shim, S. Y., Quang-To, L., Lee, S. H. and Kim, S. K. 2009. Ecklonia cava extract suppresses the high affinity IgE receptor, FcRI expression. Food Chem. Toxicol. 47, 555-560.   DOI
26 Thomson, M. J., Williams, M. G. and Frost, S. C. 1997. Development of insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 272, 7759-7764.   DOI
27 Elmendorf, J. S., Damrau-Abney, A., Smith, T. R., David, T. S. and Turinsky, J. 1995. Insulin stimulated phosphatidylinositol 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles. Biochem. Biophys. Res. Commun. 28, 1147-1153.
28 Herman, M. A. and B Kahn, B. B. 2006. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116, 1767-1775.   DOI
29 Holman, G. D. and Kasuga, M. 1997. From receptor to transporter: insulin signaling to glucose transport. Diabetologia 40, 991-1003.   DOI
30 Kang, K.,A., Lee, K. H., Chae, S. W., Zhang, R., Jung, M. S., Lee, Y. K., Kim, S. Y., Kim, H. S., Joo, H. G., Park, J. W., Ham, Y. M., Lee, N. H. and Hyun, J. W. 2005. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS. Lett. 579, 6295-6304.   DOI
31 Green, H. and Kehinde, O. 1974. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1, 113-116.   DOI