• Title/Summary/Keyword: accurate solution

Search Result 1,195, Processing Time 0.029 seconds

An Approximate Formulation for Scattering by Very Thin Dielectric Scatters (얇은 유전체의 산란특성 해석을 위한 근사식)

  • Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.765-774
    • /
    • 2004
  • In this paper, a novel approximate solution for scattering by a very thin planar homogeneous dielectric scatterer with an arbitrary shape is formulated. This solution is based on a volumetric integral equation and is expressed in terms of Fourier transform. It is shown that the obtained solution is reduced to an exact solution for an infinite dielectric slab. For 2D, or 3D scatterers, the formulation is verified numerically. Especially fur edge-on TM polarized wave incidence a closed-form solution of backscattering from a thin dielectric half-plane is formulated, which is very accurate for wide range of normalized surface impedance except very low impedances(│η│〈0.5).

A Z-map Update Method for Linearly Moving tools (직선 운동하는 공구에 대한 Z-맵의 갱신 방법)

  • 맹승렬;백낙훈;신성용;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.219-232
    • /
    • 2002
  • In numerically controlled(NC) machining simulation, a Z-map has been used frequently for representing a workpiece. Since the Z-map is usually represented by a set of Z-axis aligned vectors, the machining process can be simulated through calculating the intersection points between the vectors and the surface swept by a machining tool. In this paper, we present an efficient method to calculate those intersection points when an APT-type tool moves along a linear tool path. Each of the intersection points can be expressed as the solution of a system of non-linear equations. We transform this system of equations into a single-variable equation, and calculate the candidate interval in which the unique solution exists. We prove the existence of a solution and its uniqueness in this candidate interval. Based on these characteristics, we can effectively apply numerical methods to finally calculate the solution of the non-linear equations within a given precision. The whole process of NC simulation can be achieved by updating the Z-map properly. Our method can provide more accurate results with a little more processing time, in comparison with the previous closed-form solution.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Explicit Solution of Wave Dispersion Equation Using Recursive Relation (순환 관계에 의한 파랑분산식의 양해)

  • Lee, Changhoon;Jang, Hochul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.111-114
    • /
    • 2008
  • Explicit solutions of the wave dispersion equation are developed using the recursive relation in terms of the relative water depth. We use the solutions of Eckart (1951), Hunt (1979), and the deep-water and shallow-water solutions for initial values of the solution. All the recursive solutions converge to the exact one except that with the initial value of deep-water solution. The solution with the initial value by Hunt converged much faster than the others. The recursive solutions may be obtained quickly and simply by a hand calculator. For the transformation of linear water waves in whole water depth, the use of the recursive solutions will yield more accurate analytical solutions than use of previously developed explicit solutions.

Comparison of Parabolic Mild-Slope Equations in View of Wave Diffraction (회절현상의 관점에서 본 포물선형 완경사방정식의 비교)

  • 이해균;이길성;이창훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • Among the phenomena of water-wave transformation, the wave diffraction is prominent for waves insidc the harbor. It is important to study how accurately the diffraction can be resolved by the numerical model. Three parabolic mild-slope equations, i.e., simple, wide-ang1e, three-parameter parabolic equations, are compared in view of the diffraction of water-waves around a semi-infinite breakwater. To avoid reflections at lateral boundaries, we apply the perfect boundary condition of Dalrymple and Martin (1992) in case of simple parabolic equation. The numerical results for the case of a semi-infinite breakwater are compared with the analytical solution of Penney and Price (1952). All the results are very accurate when waves attack the breakwater normally. When waves attack the breakwater obliquely, however, the simple parabolic equation yields the worst solution and the three-parameter parabolic equation yields the most accurate solution.

  • PDF

Application of Satellite Image Using RFM (다항식비례모형을 이용한 위성영상의 활용에 관한 연구)

  • Sohn, Hong-Gyoo;Yoo, Hyung-Uk;Park, Choung-Hwan
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.73-80
    • /
    • 2002
  • RFM is believed to be universally applicable to any type of the sensor. Most of researches carried out lately are concentrated on terrain-independent method, but the researches about approvement of accuracy by way of terrain-dependent method are required to increase a practical use of satellite imagery in nonprofessional groups. This research focused on a means to improve RFM solution, a matching technique, and a generation of DEM through a correlation analysis, with terrain-dependent solution. The result shows that accuracy problem which is caused by over-parameterization on RFCs was removed through correlation analysis, and it was possible to generate a accurate DEM with terrain-dependent solution. And also, the application of RFM with different satellite images show sensor independent characteristics of RFM

  • PDF

Numerical Experimentation of a 2-D B-Spline Higher Order Panel Method (2차원 B-스플라인 기저 고차패널법의 수치실험)

  • Chung-Ho Cho;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. Unlike Lee/Kerwin, who placed multiple control points on each panel and solved the overdetermined system of equation by the least square approach, the present method places only as many number of control points as required by the unknowns of the problem. Especially, a null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. The new approach, is validated to be accurate through comparison with the analytic solution for a 2-D airfoil and to be less time-consuming due to fewer number of panels required than that used in Lee/Kerwin.

  • PDF

An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution

  • Jaouhar, El-Mustapha;Li, Li;Aubertin, Michel
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.889-898
    • /
    • 2018
  • Backfilling of mine stopes with waste rocks or tailings is commonly done to enhance ground stability. It is also an alternative for mining wastes disposal. A successful application of underground backfilling requires an accurate evaluation of the stress distribution in stopes. Over the years, various analytical solutions have been proposed to assess these stresses. Most of them were based on the arching theory, considering uniform stresses across horizontal layer elements. The vertical and horizontal stresses in vertical stopes are principal stresses only along the vertical center line, but not close to the walls where there is rotation of the principal stresses. A few solutions use arc layer elements that follow the iso-contours of the minor principal stresses, based on numerical solutions. In this paper, a modified analytical solution is developed for the stresses in vertical backfilled stopes, considering a circular arc distribution. The proposed solution is calibrated with a few numerical modeling results and then validated by additional numerical simulations under different conditions.

A Study on the Molecular Changes of Tungstophosphate Species at Different pH Values using Spectroscopy (pH 변화에 따른 Tungstophosphates 화합물의 분자형태 변화에 대한 분광학적 연구)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.284-289
    • /
    • 2011
  • All spectroscopic methods used in this work indicate the instability of tungstophosphates in aqueous solutions and considerable dependence on pH with regard to the dominant species present in the solution. UV spectroscopy indicates that some changes occur in the system but they cannot be specified. IR spectroscopy gives more information on the identification of the dominant species as a function the pH of the solution. NMR spectroscopy provides unique data, which can be used for more accurate interpretation of changes in the solution of various pH values. In the case of aqueous solutions of tungstophosphates, the parent anion was present only in a very acidic solution of ca. pH 1. Some differences in interpretation of the molecular species present under various experimental conditions can be ascribed to some extent to the diversity of chemical shifts of NMR. Under physiological conditions attained with the addition of NaOH, tungstophosphates was dominantly present in the form of the lacunary monovacant anion.

Nonlinear Interaction of Directional Irregular Waves (비선형 간섭을 고려한 다방향 불규칙파의 해석)

  • 홍기용
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.209-218
    • /
    • 1995
  • Nonlinear interaction between directional wave components is theoretically analyzed in deep water. The perturbed solution for an irregular wave is derived accurate up to the third order of the wave steepness and it is shown that the wave characteristics are modulated due to the nonlinear interaction. The convergence rate of the perturbed solution depends on not only wave steepness but also wavelength ratio between wave components. The long-wave component of the perturbed solution converges rapidly. while the short-wave solution converges slowly or diverges. The short wave properties in a broad-band wave spectrum cannot accurately be obtained by the conventional wave-mode method because it fails to properly describe the modulation of short-wave frequency caused by the nonlinear interaction with much longer wave.

  • PDF