Browse > Article
http://dx.doi.org/10.12989/acd.2020.5.1.055

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach  

Singh, Agyapal (Department of Mechanical Engineering, Indian Institute of Technology Guwahati)
Kumari, Poonam (Department of Mechanical Engineering, Indian Institute of Technology Guwahati)
Publication Information
Advances in Computational Design / v.5, no.1, 2020 , pp. 55-89 More about this Journal
Abstract
For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.
Keywords
free vibration; extended Kantorovich method (EKM); analytical solution; angle-ply piezoelectric laminate; arbitrary boundary conditions; smart structures;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Heyliger, P. and Brooks, S. (1995), "Free vibration of piezoelectric laminates in cylindrical bending", J. Solids Struct., 32(20), 2945-2960. https://doi.org/10.1016/0020-7683(94)00270-7.   DOI
2 Cheng, Z.Q., Lim, C. and Kitipornchai, S. (1999), "Three-dimensional exact solution for inhomogeneous and laminated piezoelectric plates", J. Eng. Sci., 37(11), 1425-1439. https://doi.org/10.1016/S0020-7225(98)00125-6.   DOI
3 Heyliger, P. and Brooks, S. (1996), "Exact solutions for laminated piezoelectric plates in cylindrical bending", J. Appl. Mech., 63(4), 903-910.   DOI
4 Heyliger, P. and Saravanos, D. (1995), "Exact free-vibration analysis of laminated plates with embedded piezoelectric layers", J. Acoustical Soc. America, 98(3), 1547-1557. https://doi.org/10.1121/1.413420.   DOI
5 Hussein, M. and Heyliger, P. (1998), "Three-dimensional vibrations of layered piezoelectric cylinders", J. Eng. Mech., 124(11), 1294-1298. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:11(1294).   DOI
6 Jones, A.T. (1970), "Exact natural frequencies for cross-ply laminates", J. Compos. Mater., 4(4), 476-491. https://doi.org/10.1177/002199837000400404.   DOI
7 Jones, A.T. (1971), "Exact natural frequencies and modal functions for a thick off-axis lamina", J. Compos. Mater., 5(4), 504-520. https://doi.org/10.1177/002199837100500409.   DOI
8 Kapuria, S. and Dhanesh, N. (2017), "Free edge stress field in smart piezoelectric composite structures and its control: An accurate multiphysics solution", J. Solids Struct., 126, 196-207. https://doi.org/10.1016/j.ijsolstr.2017.08.007.   DOI
9 Kapuria, S. and Kumari, P. (2011), "Extended Kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending", J. Appl. Mech., 78(6), 061004. https://doi.org/10.1115/1.4003779.   DOI
10 Kapuria, S. and Kumari, P. (2012), "Multiterm extended Kantorovich method for three-dimensional elasticity solution of laminated plates", J. Appl. Mech., 79(6), 061018. https://doi.org/10.1115/1.4006495.   DOI
11 Kapuria, S. and Kumari, P. (2013), "Extended Kantorovich method for coupled piezoelasticity solution of piezolaminated plates showing edge effects", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2151), 20120565. https://doi.org/10.1098/rspa.2012.0565.   DOI
12 Kumari, P. and Behera, S. (2017a), "Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method", Compos. Part B Eng., 116, 224-238. https://doi.org/10.1016/j.compositesb.2017.01.057.   DOI
13 Kapuria, S., Kumari, P. and Nath, J. (2010), "Efficient modeling of smart piezoelectric composite laminates: a review", Acta Mechanica, 214(1-2), 31-48. https://doi.org/10.1007/s00707-010-0310-0.   DOI
14 Kerr, A.D. (1969), "An extended Kantorovich method for the solution of eigenvalue problems", J. Solids Struct., 5(6), 559-572. https://doi.org/10.1016/0020-7683(69)90028-6.   DOI
15 Kerr, A.D. and Alexander, H. (1968), "An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate", Acta Mechanica, 6(2-3), 180-196. https://doi.org/10.1007/BF01170382.   DOI
16 Khdeir, A. (2001), "Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical bending", J. Vib. Control, 7(6), 781-801. https://doi.org/10.1177/107754630100700602.   DOI
17 Kim, J.S. (2007), "Free vibration of laminated and sandwich plates using enhanced plate theories", J. Sound Vib., 308(1-2), 268-286. https://doi.org/10.1016/j.jsv.2007.07.040.   DOI
18 Kumari, P. and Behera, S. (2017b), "Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method", Compos. Part B Eng., 116, 224-238. https://doi.org/10.1016/j.compositesb.2017.01.057.   DOI
19 Kumari, P., Kapuria, S. and Rajapakse, R. (2014), "Three-dimensional extended Kantorovich solution for Levy-type rectangular laminated plates with edge effects", Compos. Struct., 107, 167-176. https://doi.org/10.1016/j.compstruct.2013.07.053.   DOI
20 Kumari, P., Nath, J., Dumir, P. and Kapuria, S. (2007), "2D exact solutions for flat hybrid piezoelectric and magnetoelastic angle-ply panels under harmonic load", Smart Mater. Struct., 16(5), 1651. https://doi.org/10.1088/0964-1726/16/5/018.   DOI
21 Saravanos, D.A. and Heyliger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates, and shells", Appl. Mech. Rev., 52(10), 305-320. https://doi.org/10.1115/1.3098918.   DOI
22 Kumari, P., Singh, A., Rajapakse, R. and Kapuria, S. (2017), "Three-dimensional static analysis of Levy-type functionally graded plate with in-plane stiffness variation", Compos. Struct., 168, 780-791. https://doi.org/10.1016/j.compstruct.2017.02.078.   DOI
23 Messina, A. (2001), "Two generalized higher order theories in free vibration studies of multilayered plates", J. Sound Vib., 242(1), 125-150. https://doi.org/10.1006/jsvi.2000.3364.   DOI
24 Messina, A. and Soldatos, K.P. (2002), "A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses", J. Solids Struct., 39(3), 617-635. https://doi.org/10.1016/S0020-7683(01)00169-X.   DOI
25 Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", J. Solids Struct., 40(24), 6859-6876. https://doi.org/10.1016/j.ijsolstr.2003.08.003.   DOI
26 Qing, G., Qiu, J. and Liu, Y. (2006), "A semi-analytical solution for static and dynamic analysis of plates with piezoelectric patches", J. Solids Struct., 43(6), 1388-1403. https://doi.org/10.1016/j.ijsolstr.2005.03.048.   DOI
27 Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.   DOI
28 Sheng, H., Wang, H. and Ye, J. (2007), "State space solution for thick laminated piezoelectric plates with clamped and electric open-circuited boundary conditions", J. Mech. Sci., 49(7), 806-818. https://doi.org/10.1016/j.ijmecsci.2006.11.012.   DOI
29 Shu, X. (2005b), "Modelling of cross-ply piezoelectric composite laminates in cylindrical bending with interfacial shear slip", J. Mech. Sci., 47(11), 1673-1692. https://doi.org/10.1016/j.ijmecsci.2005.07.003.   DOI
30 Shu, X. (2005a), "Free vibration of laminated piezoelectric composite plates based on an accurate theory", Compos. Struct., 67(4), 375-382. https://doi.org/10.1016/j.compstruct.2004.01.022.   DOI
31 Udayakumar, B. and Gopal, K.N. (2017), "A modified state space differential quadrature method for free vibration analysis of soft-core sandwich panels", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636217727801.
32 Singh, A., Kumari, P. and Hazarika, R. (2018), "Analytical Solution for Bending Analysis of Axially Functionally Graded Angle-Ply Flat Panels", Math. Problems Eng., 2018. https://doi.org/10.1155/2018/2597484.
33 Singhatanadgid, P. and Singhanart, T. (2017), "The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates: A literature review", Mech. Adv. Mater. Struct., pages 1-19. https://doi.org/10.1080/15376494.2017.1365984.
34 Singhatanadgid, P. and Singhanart, T. (2019), "The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates: A literature review", Mech. Adv. Mater. Struct., 26(2), 170-188. https://doi.org/10.1080/15376494.2017.1365984.   DOI
35 Vel, S.S., Mewer, R. and Batra, R. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", J. Solids Struct., 41(5-6), 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012.   DOI
36 Wu, C.P., Chiu, K.H. and Wang, Y.M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells", Comput. Mater. Continua, 8(2), 93- 132.
37 Yang, J., Batra, R. and Liang, X. (1994), "The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators", Smart Mater. Struct., 3(4), 485. https://doi.org/10.1088/0964-1726/3/4/011.   DOI
38 Wu, C.P. and Liu, Y.C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031.   DOI
39 Xu, K., Noor, A.K. and Tang, Y.Y. (1997), "Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates", Comput. Methods Appl. Mech. Eng., 141(1-2), 125-139. https://doi.org/10.1016/S0045-7825(96)01065-1.   DOI
40 Yan, W., Lv, T., Lei, T. and Zhi, J. (2019), "Exact analysis of imperfect angle-ply laminated panels with surface-bonded piezoelectric layers", Arch. Appl. Mech., 1-12. https://doi.org/10.1007/s00419-018-01502-z.
41 Yang, J., Batra, R.C. and Liang, X. (1995), "Vibration of a simply supported rectangular elastic plate due to piezoelectric actuators", Smart Structures and Materials 1995: Mathematics and Control in Smart Structures, Volume 2442, International Society for Optics and Photonics, Bellingham, WA, USA. 168-181.
42 Zhang, Z., Feng, C. and Liew, K. (2006), "Three-dimensional vibration analysis of multilayered piezoelectric composite plates", J. Eng. Sci., 44(7), 397-408. https://doi.org/10.1016/j.ijengsci.2006.02.002.   DOI
43 Zhou, Y., Chen, W. and Lu, C. (2010), "Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections", Compos. Struct., 92(4), 1009-1018. https://doi.org/10.1016/j.compstruct.2009.09.048.   DOI
44 Zhou, Y., Chen, W., Lu, C. and Wang, J. (2009), "Free vibration of cross-ply piezoelectric laminates in cylindrical bending with arbitrary edges", Compos. Struct., 87(1), 93-100. https://doi.org/10.1016/j.compstruct.2008.01.002.   DOI
45 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Design, 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.   DOI
46 Abad, F. and Rouzegar, J. (2019), "Exact wave propagation analysis of moderately thick Levytype plate with piezoelectric layers using spectral element method", Thin-Walled Struct., 141, 319-331. https://doi.org/10.1016/j.tws.2019.04.007.   DOI
47 Abaqus, A. (2013), "6.13 Analysis Users Manual", SIMULIA, Providence, IR, USA.
48 Balabaev, S. and Ivina, N. (2014), "A three-dimensional analysis of natural vibrations of rectangular piezoelectric transducers", Russian J. Nondestructive Testing, 50(10), 602-606. https://doi.org/10.1134/S1061830914100027.   DOI
49 Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. https://doi.org/10.1177/1077546316672788.   DOI
50 Batra, R. and Liang, X. (1997), "The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators", Comput. Struct., 63(2), 203-216. https://doi.org/10.1016/S0045-7949(96)00349-5.   DOI
51 Behera, S. and Kumari, P. (2019), "Analytical Piezoelasticity Solution for Natural Frequencies of Levy-Type Piezolaminated Plates", J. Appl. Mech., 11(03), 1950023. https://doi.org/10.1142/S1758825119500236.
52 Chen, W. and Ding, H. (2002), "On free vibration of a functionally graded piezoelectric rectangular plate", Acta Mechanica, 153(3-4), 207-216. https://doi.org/10.1007/BF01177452.   DOI
53 Chen, W. and Lee, K.Y. (2004), "On free vibration of cross-ply laminates in cylindrical bending", J. Sound Vib., 3(273), 667-676. https://doi.org/10.1016/j.jsv.2003.08.003.   DOI
54 Chen, W. and Lu, C. (2005), "3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported", Compos. Struct., 69(1), 77-87. https://doi.org/10.1016/j.compstruct.2004.05.015.   DOI
55 Dube, G., Kapuria, S. and Dumir, P. (1996a), "Exact piezothermoelastic solution of simplysupported orthotropic circular cylindrical panel in cylindrical bending", Archive Appl. Mech., 66(8), 537-554. https://doi.org/10.1007/BF00808143.   DOI
56 Cheng, Z.Q. and Batra, R. (2000a), "Three-dimensional asymptotic analysis of multiple-electroded piezoelectric laminates", AIAA J., 38(2), 317-324. https://doi.org/10.2514/2.959.   DOI
57 Cheng, Z.Q. and Batra, R. (2000b), "Three-dimensional asymptotic scheme for piezothermoelastic laminates", J. Thermal Stresses, 23(2), 95-110. https://doi.org/10.1080/014957300280470.   DOI
58 Cheng, Z.Q., Lim, C. and Kitipornchai, S. (2000), "Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates", J. Solids Struct., 37(23), 3153-3175. https://doi.org/10.1016/S0020-7683(99)00036-0.   DOI
59 Dube, G., Kapuria, S. and Dumir, P. (1996b), "Exact piezothermoelastic solution of simply supported orthotropic flat panel in cylindrical bending", J. Mech. Sci., 38(11), 1161-1177. https://doi.org/10.1016/0020-7403(96)00020-3.   DOI
60 Ebrahimi, F. and Barati, M.R. (2016), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys., 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9.   DOI
61 Ebrahimi, F. and Barati, M.R. (2017a), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec.   DOI
62 Ebrahimi, F. and Barati, M.R. (2017b), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazilian Soc. Mech. Sci. Eng., 39(6), 2203-2223. https://doi.org/10.1007/s40430-016-0646-z.   DOI