DOI QR코드

DOI QR Code

An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution

  • Jaouhar, El-Mustapha (Research Institute on Mines and Environment (RIME UQAT-Polytechnique)) ;
  • Li, Li (Research Institute on Mines and Environment (RIME UQAT-Polytechnique)) ;
  • Aubertin, Michel (Research Institute on Mines and Environment (RIME UQAT-Polytechnique))
  • Received : 2017.06.15
  • Accepted : 2018.03.23
  • Published : 2018.06.30

Abstract

Backfilling of mine stopes with waste rocks or tailings is commonly done to enhance ground stability. It is also an alternative for mining wastes disposal. A successful application of underground backfilling requires an accurate evaluation of the stress distribution in stopes. Over the years, various analytical solutions have been proposed to assess these stresses. Most of them were based on the arching theory, considering uniform stresses across horizontal layer elements. The vertical and horizontal stresses in vertical stopes are principal stresses only along the vertical center line, but not close to the walls where there is rotation of the principal stresses. A few solutions use arc layer elements that follow the iso-contours of the minor principal stresses, based on numerical solutions. In this paper, a modified analytical solution is developed for the stresses in vertical backfilled stopes, considering a circular arc distribution. The proposed solution is calibrated with a few numerical modeling results and then validated by additional numerical simulations under different conditions.

Keywords

References

  1. Askew, J., McCarthy, P.L and Fitzgerald, D.J. (1978), "Backfill research for pillar extraction at ZC/NBHC", Proceedings of the 12th Canadian Rock Mechanics Symposium, Sudbury, Canada.
  2. Atkinson, J.H., Cairncross, A.M. and James, R.G. (1974), "Model tests on shallow tunnels in sand and clay", Tunn. Tunn., 6(4), 28-32.
  3. Aubertin, M. (1999), "Application de la mecanique des sols pour l'analyse du comportement des remblais miniers souterrains", Proceedings of the Short Course Lecture Notes, 14th Ground Control Conference, Val-d'Or, Quebec,Canada, March.
  4. Aubertin, M., Bernier, L. and Bussiere, B. (2002), Environnement et Gestion des Rejets Miniers, Presse Internationale Polytechnique, Montreal, Canada.
  5. Aubertin, M., Li, L., Arnoldi, S., Belem, T., Bussiere, B., Benzaazoua, M. and Simon, R. (2003), "Interaction between backfill and rock mass in narrow stopes", Proceedings of the Soil and Rock America 2003, Cambridge,
  6. Massachusetts, Cambridge, Massachusetts, U.S.A., June. Das, B.M. (1998), Principles of Geotechnical Engineering-Equivalent Hydraulic Conductivity in Stratified Soil, PSW.
  7. Becker, D.E. and Moore, I.D. (2006), Canadian Manual of Foundation Engineering, Canadian Geotechnical Society, Canada.
  8. Blight, G.E. (1984), "Soil mechanics principals in underground mining", Geotechnique, 110(5), 567-581.
  9. Bowles, J.E. (1996), Foundation Analysis and Design, McGraw-Hill.
  10. Cowin, S.C. (1977), "The theory of static loads in bins", J. Appl. Mech., 44(3), 409-412. https://doi.org/10.1115/1.3424092
  11. Dalvi, R.S. and Pise, P.J. (2008), "Effect of arching on passive earth pressure coefficient", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, October.
  12. De Souza, E. and Dirige, A.P.E. (2002), "Arching effects and sillmat behaviour", Proceedings of the 104th Annual General Meeting of the Canadian Institute of Mining Metallurgy and Petroleum, Vancouver, B.C., Canada, May.
  13. Falaknaz, N., Aubertin, M. and Li, L. (2015), "Numerical investigation of the geomechanical response of adjacent backfilled stopes", Can. Geotech. J., 52(10), 1507-1525. https://doi.org/10.1139/cgj-2014-0056
  14. Goel, S. and Patra, N.R. (2008), "Effect of arching on active earth pressure for rigid retaining walls considering translation mode", J. Geomech., 8(2), 123-133. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(123)
  15. Handy, R.L. (1985), "The arch in soil arching", J. Geotech. Eng., 111(3), 302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302)
  16. Harrop-Williams, K.O. (1989), "Geostatic wall pressures", J. Geotech. Eng., 115(9), 1321-1325. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:9(1321)
  17. Hartlen, J., Nielsen, J., Ljunggren, L., Martensson, G. and Wigram, S. (1984), The Wall Pressure in Large Grain Silos, Swedish Council for Building Research, Stockholm, Sweden.
  18. Itasca. (2002), Itasca Consulting Group Inc. User's Guide, Theory and Background, Fast Lagrangian Analysis of Continua, Minneapolis, Minnesota, U.S.A.
  19. Jahanbakhshzadeh, A., Aubertin, M. and Li, L. (2017), "A new analytical solution for the stress state in inclined backfilled mine stopes", Geotech. Geol. Eng., 35(3), 1151-1167. https://doi.org/10.1007/s10706-017-0171-6
  20. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Arch. Eng., 7, 355-358.
  21. Janssen, H.A. (1895), "Versuche uber getreidedruck in silozellen", Z. Ver. Dtsch. Ing., 39, 1045-1049.
  22. Knutsson, S. (1981), "Stresses in the hydraulic backfill from analytical calculations and in-situ measurements", Proceedings of the Conference on the Application of Rock Mechanics to Cut and Fill Mining, Lulea, Sweden, June.
  23. Komurlu, E. and Kesimala, A. (2015), "Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades", Geomech. Eng., 9(2), 195-205. https://doi.org/10.12989/gae.2015.9.2.195
  24. Kutzner, C. (1997), Earth and Rockfill Dams: Principles of Design and Construction, CRC Press.
  25. Ladanyi, B. and Hoyaux, B. (1969), "A study of the trap-door problem in a granular mass", Can. Geotech. J., 6(1), 1-14. https://doi.org/10.1139/t69-001
  26. Li, L, Aubertin, M. and Belem, T. (2005), "Formulation of a threedimensional analytical solution to evaluate stress in backfilled vertical narrow openings", Can. Geotech. J., 42(6), 1705-1717. https://doi.org/10.1139/t05-084
  27. Li, L. and Aubertin, M. (2008), "An improved analytical solution to estimate the stress state in sub-vertical backfilled stopes", Can. Geotech. J., 45(10), 1487-1496. https://doi.org/10.1139/T08-060
  28. Li, L. and Aubertin, M. (2009a), "Influence of water pressure on the stress state in stopes with cohesionless backfill", Geotech. Geol. Eng., 27(1), 1-11. https://doi.org/10.1007/s10706-008-9207-2
  29. Li, L. and Aubertin, M. (2009b), "A three-dimensional analysis of the total and effective stresses in submerged backfilled stopes", Geotech. Geol. Eng., 27(4), 559-569. https://doi.org/10.1007/s10706-009-9257-0
  30. Li, L. and Aubertin, M. (2009c), "Horizontal pressure on barricades for backfilled stopes. Part I: Fully drained conditions", Can. Geotech. J., 46(1), 37-46. https://doi.org/10.1139/T08-104
  31. Li, L. and Aubertin, M. (2009d), "Horizontal pressure on barricades for backfilled stopes. Part II: Submerged conditions", Can. Geotech. J., 46(1), 47-56. https://doi.org/10.1139/T08-105
  32. Li, L. and Aubertin, M. (2015), "Numerical analysis of the stress distribution in symmetrical backfilled trenches with inclined walls", Ind. Geotech. J., 45(3), 278-290. https://doi.org/10.1007/s40098-014-0131-5
  33. Li, L., Aubertin, M., Shirazi, A., Belem, T. and Simon, R. (2007), "Stress distribution in inclined backfilled stopes", Proceedings of the 9th International Symposium in Mining with Backfill, Montreal, Canada, April-May.
  34. Li, L., Aubertin, M., Simon, R., Bussiere, B. and Belem, T. (2003), "Modeling arching effects in narrow backfilled stopes with FLAC", Proceedings of the 3rd International Symposium on FLAC and Numerical Modeling in Geomechanics, Subury, Canada, October.
  35. Marston, A. (1930), The Theory of External Loads on Closed Conduits in the Light of Latest Experiments, Bulletin No. 96, Iowa Engineering Experiment Station, Iowa State College, Ames, Iowa, U.S.A.
  36. McCarthy, D.F. (1988), Essentials of Soil Mechanics and Foundations: Basic Geotechnics, Upper Saddle River, Prentice Hall, New Jersey, U.S.A.
  37. McCarthy, D.F. (1993), Essentials of Soil Mechanics and Foundations: Basic Geotechnics, 4th Edition, Prentice Hall Books.
  38. Moradi, G. and Abbasnejad, A. (2015), "Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb", Geomech. Eng., 8(6), 829-844. https://doi.org/10.12989/gae.2015.8.6.829
  39. Ning, J., Wang, J., Tan, Y., Zhang, L. and Bu, T. (2017). "In situ investigations into mining-induced overburden failures in close multiple-seam longwall mining: A case study", Geomech. Eng., 12(4), 657-673. https://doi.org/10.12989/gae.2017.12.4.657
  40. Ono, K. and Yamada, M. (1993), "Analysis of arching action in granular mass", Geotechnique, 43(1), 105-120. https://doi.org/10.1680/geot.1993.43.1.105
  41. Ooi, J.Y. and Rotter, J.M. (1990), "Wall pressures in squat steel silos from simple finite element analysis", Comput. Struct., 37(4), 361-374. https://doi.org/10.1016/0045-7949(90)90026-X
  42. Paik, K.H. and Salgado, R. (2003), "Estimation of active earth pressure against rigid retaining walls considering arching effects", Geotechnique, 53(7), 643-653. https://doi.org/10.1680/geot.2003.53.7.643
  43. Pirapakaran, K. and Sivakugan, N. (2006), "Numerical and experimental studies of arching effects within mine fill slopes", Proceedings of the 6th International Conference on Physical Modelling in Geotechnics, Hong Kong, August.
  44. Pirapakaran, K. and Sivakugan, N. (2007a), "A laboratory model to study arching within a hydraulic fill stope", Geotech. Test. J., 30(6), 496-503.
  45. Pirapakaran, K. and Sivakugan, N. (2007b), "Arching within hydraulic fill stopes", Geotech. Geol. Eng., 25(1), 25-35. https://doi.org/10.1007/s10706-006-0003-6
  46. Singh, S., Shukla, S.K. and Sivakugan, N. (2011), "Arching in inclined and vertical mine stopes", Geotech. Geol. Eng., 29(5), 685-693. https://doi.org/10.1007/s10706-011-9410-4
  47. Sobhi, M.A., Li, L. and Aubertin, M. (2017), "Numerical investigation of earth pressure coefficient along central line of backfilled stopes", Can. Geotech. J., 54(1), 138-145. https://doi.org/10.1139/cgj-2016-0165
  48. Sokolovoski, V.V. (1965), Statics of Granular Media, Pergamon Press, Oxford, U.K.
  49. Spangler, M.G. (1962), Section 11: Culverts and Conduits. Foundation Engineering, McGraw-Hill, New York, U.S.A.
  50. Take, W.A. and Valsangkar, A.J. (2001), "Earth pressures on unyielding retaining walls of narrow backfill width", Can. Geotech. J., 38(6), 1220-1230. https://doi.org/10.1139/t01-063
  51. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, U.S.A.
  52. Thompson, B.D., Grabinsky, M.W. and Bawden, W.F. (2012), "In situ measurements of cemented paste backfill at Cayeli Mine", Can. Geotech. J., 49(7), 755-772. https://doi.org/10.1139/t2012-040
  53. Ting, C.H., Sivakugan, N., and Shukla, S.K. (2012), "Laboratory simulation of the stresses within inclined stopes", Geotech. Test. J., 35(2), 280-294.
  54. Yang, P., Li, L. and Aubertin, M. (2017a), "Stress ratios in entire mine stopes with cohesionless backfill: A numerical study", Minerals, 7(10), 201. https://doi.org/10.3390/min7100201
  55. Yang, P.Y., Li, L., Aubertin, M., Brochu-Baekelmans, M. and Ouellet, S. (2017b), "Stability analyses of waste rock barricades designed to retain paste backfill", Int. J. Geomech., 17(3), 04016079. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000740

Cited by

  1. Effect of Drainage and Consolidation on the Pore Water Pressures and Total Stresses within Backfilled Stopes and on Barricades vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/1802130
  2. Experimental and numerical study on behavior of retaining structure with limited soil vol.26, pp.1, 2018, https://doi.org/10.12989/gae.2021.26.1.077
  3. Arching effect in sand piles under base deflection using geometrically non-linear isogeometric analysis vol.26, pp.4, 2018, https://doi.org/10.12989/gae.2021.26.4.369
  4. Experimental study of the evolution of pore water pressure and total stresses during and after the deposition of slurried backfill vol.26, pp.5, 2018, https://doi.org/10.12989/gae.2021.26.5.499