• Title/Summary/Keyword: a-Si:H

Search Result 4,043, Processing Time 0.03 seconds

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio) (N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포)

  • Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

A study on ESD Protection circuit based on 4H-SiC MOSFET (4H-SiC MOSFET기반 ESD보호회로에 관한 연구)

  • Seo, Jeong-Ju;Do, Kyoung-Il;Seo, Jeong-Ju;Kwon, Sang-Wook;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1202-1205
    • /
    • 2018
  • In this paper, we proposed ggNMOS based on 4H-SiC material and analyzed its electrical characteristics. 4H-SiC is a wide band-gap meterial, which is superior in area contrast and high voltage characteristics to Si material, and is attracting attention in the power semiconductor field. The proposed device has high robustness and strong snapback characteristics. The process consisted of SiC process and electrical characteristics were analyzed by TLP measurement equipment.

다결정 실리콘 박막을 사용한 비휘발성 메모리 장치의 OSO 적층구조에 따른 전하 저장량의 증가

  • Baek, Il-Ho;Jeong, Seong-Uk;Lee, Won-Baek;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.150-150
    • /
    • 2010
  • 비휘발성 메모리의 구조는 ONO($SiO_2$, $SiN_X$, $SiN_XN_Y$), 혹은 NNO($SiN_X$, $SiN_X$, $SiN_XN_Y$)등으로 구성된 blocking layer, charge storage layer, tunneling layer 등이 일반적이다. 본 연구에서 제작된 OSO구조는charge storage layer를 a-Si을 사용한 것으로, 기존에 사용되던 charge storage layer인 $SiN_x$ 대신에 a-Si:H 를 사용하였다. 최적의 전하 저장층 조건을 알기 위하여 가스비에 따른 raman 및 bandgap 측정, 그리고 C-V 통하여 트랩된 전하 저장량 및 flatband 전압의 shift 값을 측정 및 분석하였다. 실험 결과, bandgap이 작아 band edge 저장 가능하며, SiNx 와 마찬가지로 a-Si:H 내 트랩에 저장이 가능하였다. 또한 $SiO_2$/a-Si:H와 a-Si:H/SiOxNy 계면의 결함 사이트에 전하의 저장되며, bandgap이 작아 트랩 또는 band edge에 위치한 전하들이 높은 bandgap을 가지는 blocking 또는 tunneling layer를 통하여 빠져 나오기 어려운 특성이 있었다. 본 연구에서는 최적의 전하 저장 층 조건을 알기 위하여 가스비에 raman 및 bandgap 측정, 그리고 C-V 통하여 트랩된 flatband 전압의 shift 값을 측정하여 결과를 논의하였다. 또한 OSO 구조의 두께에 있어 MIS 결과와 poly-Si 상에 실제 제작된 NVM 소자의 switching 특성을 논의하였다.

  • PDF

The Improvement of Fabrication Process for a-Si:H TFT's Yield (a-Si:H TFT의 수율 향상을 위한 공정 개선)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1099-1103
    • /
    • 2007
  • TFT's have been intensively researched for possible electronic and display applications. Through tremendous engineering and scientific efforts, a-Si:H TFT fabrication process was greatly improved. In this paper, the reason on defects occurring at a-Si:H TFT fabrication process is analyzed and solved, so a-Si:H TFT's yield is increased and reliability is improved. The a-Si:H TFT of this paper is inverted staggered type TFT. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr). We have fabricated a-SiN:H, conductor, etch-stopper and photo-resistor on gate electrode in sequence, respectively. We have deposited n+a-Si:H, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-slower pattern. The NPR layer by inverting pattern of upper Sate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFT made like this has problems at photo-lithography process caused by remains of PR. When sample is cleaned, this remains of PR makes thin chemical film on surface and damages device. Therefor, in order to improve this problem we added ashing process and cleaning process was enforced strictly. We can estimate that this method stabilizes fabrication process and makes to increase a-Si:H TFT's yield.

PECVD를 이용한 광 흡수층에서의 Germane 유량변화가 a-SiGe:H 박막 태양전지에 미치는 영향

  • Son, Won-Ho;Kim, Ae-Ri;Ryu, Sang-Hyeok;Choe, Si-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 박막형태로 제작이 가능한 비정질 실리콘은 결정질 실리콘에 비하여 AM-1 (Air Mass 1:100mW/cm2)조건하에서 10-3 S/cm 정도의 높은 광전기전도도와 가시광선 영역($4000{\sim}7000{\AA}$)에서 약 10배의 높은 광흡수계수를 가지며, $300^{\circ}C$ 이하의 낮은 기판온도에서 다양한 기판위에 대면적으로 제작이 가능할 뿐만 아니라 제작공정이 단순하여 제작비용이 저렴하다는 이점이 있다. 본 실험에서 제작된 모든 박막은 PECVD로 증착하였으며 구조는 p-i-n superstrate형 구조를 사용하였고, 각 박막의 두께는 p-a-Si:H/i-a-SiGe:H/n-a-Si:H ($300{\AA}/2000{\AA}/600{\AA}$)으로 고정하였다. a-Si:H (hydrogenated amorphous silicon) 태양전지의 광 흡수층인 i-layer에서의 germane 가스 유량 변화(0, 20, 40. 60, 80, 100 sccm)에 대한 흡수율의 차이를 UV/Vis/Nir spectrophotometer (ultraviolet/visible/near infrared spectrophotometer)를 통해 확인하고, 그에 따른 a-Si:H 박막 태양전지를 제작하여 solar simulator를 사용하여 AM 1.5 G의 환경 조건에서 태양전지 특성을 평가하였다. 그 결과 germane 가스 유량이 증가함에 따라 파장에 대한 absorptance (a.u.)값이 증가함을 알 수 있었으며, 흡수되는 파장영역의 범위가 장파장으로 확대됨을 확인할 수 있었다. 또한 germane 가스 유량이 60 sccm 일때 a-SiGe:H 박막 태양전지 변환효율이 3.80%로 최대값을 가졌다. 실험에서 germane 가스 유량이 증가할수록 흡수율이 높아져 태양전지특성이 향상될 거라 예상 했지만, 100 sccm보다 60 sccm일 때가 단락전류밀도 값과 변환효율이 높다는 것을 확인할 수 있었다. 이는 각 layer사이에 계면상의 문제가 있을 거라 예상되며 직렬저항측정을 통해 확인할 수 있다.

  • PDF

Reduction of Phosphate Adsorption by Ion Competition with Silicate in Soil

  • Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.286-296
    • /
    • 2007
  • To increase phosphate (P) availability in soils, the efficiency of silicate (Si) in reducing P adsorption was investigated by competitive adsorption tests under changing conditions of pH, ion concentrations, and order of anion addition along with single adsorption properties of each ion at $20^{\circ}C$. In the single ion adsorption study, P and Si ions showed the opposite reaction patterns: phosphate adsorption decreased with increasing pH and attained adsorption maximum however, silicate adsorption increased with increasing pH without attaining adsorption maximum. Phosphorus and Si adsorption were influenced by pH in the range of 5.0 - 9.0 and the type and amount of P and Si concentration. Silicate added to soil before P or in a mixture with P significantly reduced P adsorption above pH 7.0; however, there was no significant Si-induced decreased in P adsorption at pH 5.0 when anions were added as mixture. The efficiency of Si in reducing P adsorption increased with increasing Si concentration and pH. The effect of P on Si adsorption was relatively small at pH 5.0 and no effect of P on silicate adsorption was observed at pH 9.0. The presence of Si strongly depressed P adsorption when Si was added before P compared to P and Si added as a mixture. These results suggest that application of Si may decrease P adsorption and increase the availability of P in soils. Furthermore, a Si source would be better to add before P application to enhance the availability of P in soils.

Process and Performance Analysis of a-Si:H/c-Si Hetero-junction Solar Sells Prepared by Low Temperature Processes (저온 공정에 의한 a-Si:H/c-Si 이종접합 태양전지 제조 및 동작특성 분석)

  • Lim, Chung-Hyun;Lee, Jeong-Chul;Jeon, Sang-Won;Kim, Sang-Kyun;Kim, Seok-Ki;Kim, Dong-Seop;Yang-Sumi;Kang-Hee-Bok;Lee, Bo-young;Song-Jinsoo;Yoon-Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-200
    • /
    • 2005
  • In this work, we investigated simple Aㅣ/TCO/a-Si:H(n)/c-Si(p)/Al hetero-junction solar cells prepared by low temperature processes, unlike conventional thermal diffused c-Si solar cells. a-Si:H/c-Si hetero-junction solar cells are processed by low temperature deposition of n-type hydrogenated amorphous silicon (a-Si:H) films by plasma-enhanced chemical vapor deposition on textured and flat p-type silicon substrate. A detailed investigation was carried out to acquire optimization and compatibility of amorphous layer, TCO (ZnO:Al) layer depositions by changing the plasma process parameters. As front TCO and back contact, ZnO:Al and AI were deposited by rf magnetron sputtering and e-beam evaporation, respectively. The photovoltaic conversion efficiency under AMI.5 and the quantum efficiency on $1cm^2$ sample have been reported. An efficiency of $12.5\%$ is achieved on hetero-structure solar cells based on p-type crystalline silicon.

  • PDF

Excimer Laser Annealing Effects of Double Structured Poly-Si Active Layer (이중 활성층(a-Si/a-SiNx)의 XeCl 엑시머 레이저 어닐링 효과)

  • 최홍석;박철민;전재홍;유준석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.46-53
    • /
    • 1998
  • A new method to form the double structured active layers of a-Si/a-SiN$_{x}$ of polycrystalline thin film transistor is proposed and poly-Si TFTs employed double structure active film are fabricated. Nitrogen ions were added to bottom amorphous silicon active film(a-SiN$_{x}$ ) and pure a-Si film deposition on a-SiN$_{x}$ was followed. The XeCl excimer laser was irradiated to crystallize double structure active film. The grain growth of upper a-Si film was also promoted in the double structured active layers of a-Si/a-SiN$_{x}$ due to the mitigation of solidification process of lower a-SiN$_{x}$ layer. Our experimental results show that the ratio of NH$_3$/SiH$_4$ is required to maintain below 0.11 for the reduction of contact resistance of n$^{+}$ poly-SiN$_{x}$ layer.r.

  • PDF

a-Si:H TFT Using Ferroelectrics as a Gate Insulator (강유전체를 게이트 절연층으로 한 수소화 된 비정질실리콘 박막 트랜지스터)

  • 허창우;윤호군;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • The a-Si:H TFTs using ferroelectric of SrTiO$_3$, as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric is better than SiO$_2$, SiN. Ferroelectric increases ON-current, decreases threshold voltage of TFT and also breakdown characteristics. The a-Si:H deposited by PECVD shows absorption band peaks at wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / and 876 $cm^{-1}$ / according to FTIR measurement. Wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / are caused by stretching and rocking mode SiH1. The wavenumber of weaker band, 876 $cm^{-1}$ / is due to SiH$_2$ vibration mode. The a-SiN:H has optical bandgap of 2.61 eV, refractive index of 1.8 - 2.0 and resistivity of 10$^{11}$ - 10$^{15}$ aim respectively. Insulating characteristics of ferroelectric is excellent because dielectric constant of ferroelectric is about 60 - 100 and breakdown strength is over 1 MV/cm. TFT using ferroelectric has channel length of 8 - 20 $\mu$m and channel width of 80 - 200 $\mu$m. And it shows drain current of 3 $\mu$A at 20 gate voltages, Ion/Ioff ratio of 10$^{5}$ - 10$^{6}$ and Vth of 4 - 5 volts.

  • PDF

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.