Browse > Article
http://dx.doi.org/10.5370/KIEE.2017.66.2.370

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio)  

Seo, Kwon-Sang (Dept. of Electrical and Computer Engineering, Pusan National University)
Kim, Dong-Hyun (Dept. of Electrical and Computer Engineering, Pusan National University)
Lee, Ho-Jun (Dept. of Electrical and Computer Engineering, Pusan National University)
Publication Information
The Transactions of The Korean Institute of Electrical Engineers / v.66, no.2, 2017 , pp. 370-378 More about this Journal
Abstract
A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.
Keywords
Fluid simulation; Inductively coupled plasma; PECVD; Silicon nitride films;
Citations & Related Records
연도 인용수 순위
  • Reference
1 COMSOL Multiphysics Version 5.2 User Guide, Nov. 2015.
2 E. Gogolides and H. H. Sawin, "Continuum modeling of radio-frequency glow discharges. I. Theory and results for electropositive and electronegative gases", J. Appl. Phys., vol 72, No. 9, pp. 3971-3987, Nov. 1992.   DOI
3 E. Tatarova, F. M. Dias, E. Felizardo, J. Henriques, M. J. Pinheiro, C. M. Ferreira, and B. Gordiets, "Microwave air plasma source at atmospheric pressure: Experiment and theory", J. Appl. Phys., vol. 108, No. 12, pp. 123305 (18 pp), Dec. 2010.   DOI
4 F. J. Gordillo-Vazquez, "Air plasma kinetics under the influence of sprites", J. Phys. D: Appl. Phys., vol. 41, No. 23, pp. 234016 (33 pp), Nov. 2008.   DOI
5 Q. Xiong, A. Y. Nikiforov, X. P. Lu, and C. Leys, "High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system", J. Phys. D: Appl. Phys., vol. 43, No. 41, pp. 415201 (10 pp), Sep. 2010.   DOI
6 E. Tatarova, F. M. Dias, B. Gordiets, and C. M. Ferreira, "Molecular dissociation in $N_2-H_2$ microwave discharges", Plasma Sources Sci. Technol., vol. 14, No. 1, pp. 19-31, Feb. 2005.   DOI
7 A. Bogaerts, "Hybrid Monte Carlo - Fluid model for studying the effects of nitrogen addition to argon glow discharges", Spectrochim. Acta Part B, vol. 64, No. 2, pp. 126-140, Feb. 2009.   DOI
8 G. R. Nowling, S. E. Babayan, X. Yang, M. Moravej, R. Agarwal, and R. F. Hicks, "The reactions of silane in the afterglow of a helium-nitrogen plasma", Plasma Sources Sci. Technol., vol. 13, No. 1, pp. 156-163, Feb. 2004.   DOI
9 A. Dollet, J. P. Couderc, and B. Despax, "Analysis and numerical modelling of silicon nitride deposition in a plasma-enhanced chemical vapour deposition reactor. Part I: bidimensional modelling", Plasma Sources Sci. Technol., vol. 4, No. 1, pp. 94-106, Feb. 1995.   DOI
10 A. O. Brezmes and C. Breitkopf, "Fast and reliable simulations of argon inductively coupled plasma using COMSOL", Vacuum, vol. 116, pp. 65-72, Jun. 2015.   DOI
11 D. L. Smith, "Controlling the plasma chemistry of silicon nitride and oxide deposition from silane", J. Vac. Sci. Technol. A, vol. 11, No. 4, pp. 1843-1850, Jul. 1993.   DOI
12 M. J. Kushner, "Simulation of the gas-phase processes in remote-plasma-activated chemical -vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures", J. Appl. Phys., vol. 71, No. 9, pp. 4173-4189, May 1992.   DOI
13 L. Xiang-Mei, S. Yuan-Hong, J. Wei, and Y. Lin, "The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled $SiH_4/NH_3/N_2$ plasmas: Two-dimensional simulations", Chin. Phys. B, vol. 22, No. 4, pp. 045204 (6 pp), Apr. 2013.   DOI
14 P. J. van den Oever, J. H. van Helden, J. L. van Hemmen, R. Engeln, D. C. Schram, M. C. M. van de Sanden, and W. M. M. Kessels, "N, NH, and $NH_2$ radical densities in a remote $Ar-NH_3-SiH_4$ plasma and their role in silicon nitride deposition", J. Appl. Phys., vol. 100, No. 9, pp. 093303 (10 pp), Nov. 2006.   DOI
15 D. T. Murley, R. A. G. Gibson, B. Dunnett, A. Goodyear, and I. D. French, "Influence of gas residence time on the deposition of nitrogen-rich amorphous silicon nitride", J. Non-Cryst. Solids, vol. 187, pp. 324-328, Jan. 1995.   DOI
16 J. A. Theil, S. V. Hattangady, and G. Lucovsky, "Effects of $NH_3$ and $N_2$ source gases and plasma excitation frequencies on the reaction chemistry for $Si_3N_4$ thin-film growth by remote plasma-enhanced chemical-vapor deposition", J. Vac. Sci. Technol. A, vol. 10, No. 4, pp. 719-727, Jul. 1992.   DOI
17 C. Bohm, J. Perrin, and P. R. i Cabarrocas, "Ion-induced secondary electron emission in $SiH_4$ glow discharge, and temperature dependence of hydrogenated amorphous silicon deposition rate", J. Appl. Phys., vol. 73, No. 5, pp. 2578-2580, Mar. 1993.   DOI
18 A. G. Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovolt: Res. Appl., vol. 8, No. 5, pp. 473-487, Sep. 2000.   DOI
19 J. Yota, J. Hander, and A. A. Saleh, "A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films", J. Vac. Sci. Technol. A, vol. 18, No. 2, pp. 372-376, Mar. 2000.   DOI
20 H. Nagel, A. G. Aberle, and R. Hezel, "Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide", Prog. Photovolt: Res. Appl., vol. 7, No. 4, pp. 245-260, Jul. 1999.   DOI
21 S. Winderbaum, F. Yun, and O. Reinhold, "Application of plasma enhanced chemical vapor deposition silicon nitride as a double layer antireflection coating and passivation layer for polysilicon solar cells", J. Vac. Sci. Technol. A, vol. 15, No. 3, pp. 1020-1025, May 1997.   DOI
22 F. L. Wong, M. K. Fung, S. L. Tao, S. L. Lai, W. M. Tsang, K. H. Kong, W. M. Choy, C. S. Lee, and S. T. Lee, "Long-lifetime thin-film encapsulated organic light-emitting diodes", J. Appl. Phys., vol. 104, No. 1, pp. 014509 (4pp), Jul. 2008.   DOI
23 A. Masuda, H. Umemoto, and H. Matsumura, "Various applications of silicon nitride by catalytic chemical vapor deposition for coating, passivation and insulating films", Thin Solid Films, vol. 501, No. 1-2, pp. 149-153, Apr. 2006.   DOI
24 M. Bavafa, H. Ilati, and B. Rashidian, "Comprehensive simulation of the effects of process conditions on plasma enhanced chemical vapor deposition of silicon nitride", Semicond. Sci. Technol., vol. 23, No. 9, pp. 095023 (19pp), Aug. 2008.   DOI
25 H. J. Kim, W. Yang, and J. Joo, "Effect of electrode spacing on the density distributions of electrons, ions, and metastable and radical molecules in $SiH_4/NH_3/N_2/He$ capacitively coupled plasmas", J. Appl. Phys., vol. 118, No. 4, pp. 043304 (18 pp), Jul. 2015.   DOI