• Title/Summary/Keyword: a reduced order model

Search Result 1,027, Processing Time 0.028 seconds

Dynamic performance of reduced order model of multivariable controller for generating turbine (발전터빈 용 다변수 제어기의 축약모델 동특성)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1176-1178
    • /
    • 1998
  • This paper presents a model reduction procedure of the high order MIMO (multi input multi output) controller designed for the steam turbine in the generating plant. The application limit to reduction of the order is reviewed by variation in Hankel singular value as well as by variation in singular value Bode diagrams of transfer function matrices. Dynamic performances in the time domain are also compared for each reduced order model.

  • PDF

Model Reduction Algorithm Using Nyquist Curve in Frequency Domain (주파수 영역에서 Nyquist 선도를 이용한 모델 축소)

  • 조준호;김정철;김진권;최정내;황형수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.439-444
    • /
    • 2002
  • In this paper, a new model reduction method is proposed to obtain a reduced order model in the frequency domain. The method is developed based on the second-order plus dead time modeling technique. The initial value of the reduced model parameters can be obtained using this method coinciding four point(0, -$\pi$/2, -$\pi$, -3$\pi$/2) on the Nyquist curve. The optimal parameters of the reduced model is obtained through calculation procedure with three steps. It is shown that Nyquist curves and unit step responses of the reduced models of numerical examples closely agree with those of original models.

Sensorless Velocity Estimation using the Reduced-order State Equation of Induction Motor based on Kalman Filter (유도전동기 축소모델을 이용한 센서리스 칼만 필터 속도 추정기)

  • 이승현;정교범
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.245-248
    • /
    • 1998
  • This paper proposes a sensorless velocity estimator using the reduced-order state equation of induction motor based on Kalman Filter. The electrical transients in the stator voltage equations of induction motor are neglected in the reduced-order model. The advantage of using the reduced-order model is to reduce the required number of numerical integrations for filtering the rotor speed. As changing the operating points and the parameters of the induction motor in simulation studies, the behavior of the sensorless velocity estimator as predicted by the reduced-order state equation of induction machine is compared with the behavior predicted by the complete state equation of induction machine.

  • PDF

Study on the Time Response of Reduced Order Model under Dynamic Load (동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구)

  • 박수현;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

Development of reduced-order thermal stratification model for upper plenum of a lead-bismuth fast reactor based on CFD

  • Tao Yang;Pengcheng Zhao;Yanan Zhao;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2835-2843
    • /
    • 2023
  • After an emergency shutdown of a lead-bismuth fast reactor, thermal stratification occurs in the upper Plenum, which negatively impacts the integrity of the reactor structure and the residual heat removal capacity of natural circulation flow. The research on thermal stratification of reactors has mainly been conducted using an experimental method, a system program, and computational fluid dynamics (CFD). However, the equipment required for the experimental method is expensive, accuracy of the system program is unpredictable, and resources and time required for the CFD approach are extensive. To overcome the defects of thermal stratification analysis, a high-precision full-order thermal stratification model based on CFD technology is prepared in this study. Furthermore, a reduced-order model has been developed by combining proper orthogonal decomposition (POD) with Galerkin projection. A comparative analysis of thermal stratification with the proposed full-order model reveals that the reduced-order thermal stratification model can well simulate the temperature distribution in the upper plenum and rapidly elucidate the thermal stratification interface characteristics during the lead-bismuth fast reactor accident. Overall, this study provides an analytical tool for determining the thermal stratification mechanism and reducing thermal stratification.

Transient response analysis by model order reduction of a Mokpo-Jeju submerged floating tunnel under seismic excitations

  • Han, Jeong Sam;Won, Boreum;Park, Woo-Sun;Ko, Jin Hwan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.921-936
    • /
    • 2016
  • In this study, a model order reduction technique is applied to solve the transient responses of submerged floating tunnel (SFT) from Mokpo to Jeju under seismic excitations. Because the SFT is a very long structure as well as a transient response analysis requires large amount of computational resources, the model order reduction is mandatory in the design stage of the SFT. Thus, we apply a model order reduction based on Krylov subspace to the simplified finite element model of the SFT. The responses of the reduced order model are compared with those of the full order model and also are verified by referring a previous work. In conclusion, the computational resources are dramatically reduced with an acceptable accuracy by using the model order reduction, which eventually is useful for designing the full-scale model of SFTs.

Vibration Suppression Control for an Articulated Robot;Effects of Model-Based Control Integrated into the Position Control Loop

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2016-2021
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration with respect to a waist axis of an articulated robot. This control technique is based on a model-based control in order to establish the damping effect on the driven mechanical part. The control model is composed of reduced-order electrical and mechanical parts related to the velocity control loop. The parameters of the control model can be obtained from design data or experimental data. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration. This control method is applied to an articulated robot regarded as a time-invariant system. The effectiveness of the model-based control integrated into the position control loop is verified by simulations. Simulations show satisfactory control results to reduce the transient vibration at the end-effector.

  • PDF

Design Optimization of Transonic Wing/Fuselage System Using Proper Orthogona1 Decomposition (Proper Orthogonal Decomposition을 이용한 천음속 날개/동체 모텔의 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Cho, Maeng-Hyo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.414-420
    • /
    • 2010
  • This paper presents a validation of the accuracy of a reduced order model(ROM) and the efficiency of the design optimization using a Proper Orthogonal Decomposition(POD) to transonic wing/fuselage system. Three dimensional Euler equations are solved to extrude snapshot data of the full order aerodynamic analysis, and then a set of POD basis vectors reproducing the behavior of flow around the wing/fuselage system is calculated from these snapshots. In this study, reduced order model constructed through this procedure is applied to several validation cases, and then it is confirmed that the ROM has the capability of the prediction of flow field in the space of interest. Additionally, after the design optimization of the wing/fuselage system with the ROM is performed, results of the ROM are compared with results of the design optimization using response surface model(RSM). From these, it can be confirmed that the design optimization with the ROM is more efficient than RSM.

Reduced Quasi-Dimensional Combustion Model of the Direct Injection Diesel Engine for Performance and Emissions Predictions

  • Jung, Dohoy;Assanis, Dennis N.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.865-876
    • /
    • 2004
  • A new concept of reduced quasi-dimensional combustion model for a direct injection diesel engine is developed based on the previously developed quasi-dimensional multi-zone model to improve the computational efficiency. In the reduced model, spray penetration and air entrainment are calculated for a number of zones within the spray while three zones with aggregated spray zone concept are used for the calculation of spray combustion and emission formation processes. It is also assumed that liquid phase fuel appears only near the nozzle exit during the breakup period and that spray vaporization is immediate in order to reduce the computational time. Validation of the reduced model with experimental data demonstrated that the new model can predict engine performance and NO and soot emissions reasonably well compared to the original model. With the new concept of reduced model, computational efficiency is significantly improved as much as 200 times compared to the original model.

A Study on the Large Scale Systems Simplification for computer processing (컴퓨터 처리를 위한 대규모 시스템의 간략법에 관한 연구)

  • 황형수;권오신;이창구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.280-286
    • /
    • 1987
  • A new method is presented for obtaining redced-order model for time-invariant systems. This method does not require the calculation of the reciprocal transformation, the alpha table, the beta-table and the alpha-beta expansion which should be calculated in Routh approximation method, hence it is computationally very attractive better than Routh approximation method, furthemore the stability of the reduced-order model is guaranted if the original system is stable. This method starts with the continued fraction espansion of auxiliary denominator polynomial give for the denominator polynomial of the reduced-order model. The coefficients of the numerator polynomial are then obtained by equating moment of the original and the reduced-order medel.

  • PDF