• Title/Summary/Keyword: Zwicker's Loudness

Search Result 26, Processing Time 0.028 seconds

Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method (보조변수법을 이용한 Zwicker 라우드니스의 설계민감도)

  • Wang, Se-Myung;Kwon, Dae-Il;Kim, Chaw-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

Computation of Zwicker's loudness and design optimization with Pad$\acute{e}$ approximation (Pad$\acute{e}$ 근사법을 이용한 Zwicker 라우드니스의 계산과 최적화)

  • Kook, Jung-Hwan;Jensen, Jakob S.;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.279-284
    • /
    • 2011
  • The calculation of Zwicker's loudness which is needed for multiple frequency response with a fine frequency resolution using the finite element (FE) procedure usually requires significant computation time since a numerical solution must be obtained for each considered frequency. Furthermore, if the analysis is the basis for an iterative optimization procedure this approach imposes high computational cost. In this work, we present an efficient approach for obtaining Zwicker's loudness via the Pad$\acute{e}$ approximants and applying in an acoustical topology optimization procedure. The paper is focused on an efficient and accurate calculation of Zwicker's loudness, design sensitivity analysis, and the acoustical topology optimization method by using Pad$\acute{e}$ approximants. The paper compares the efficient algorithm to results obtained by a standard FEM. Comparison are made both in terms of accuracy and in terms of CPU-times needed for the calculation.

  • PDF

DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION OF ZWICKER'S LOUDNESS (Zwicker 라우드니스에 대한 설계 민감도 해석 및 최적화)

  • Kang, Jung-Hwan;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.149-154
    • /
    • 2004
  • The design sensitivity analysis of Zwicker's loudness with respect to structural sizing design variables is developed. The loudness sensitivity in the critical band is composed of two equations, the derivative of main specific loudness with respect to 1/3-oct band level and global acoustic design sensitivities. The main specific loudness is calculated by using FEM, BEM tools. i.e. MSC/NASTRAN and SYSNOISE. And global acoustic sensitivity is calculated by combining acoustic and structural sensitivity using the chain rule. Structural sensitivity is obtained by using semi-analytical method and acoustic sensitivity is implemented numerically using the boundary element method. For sensitivity calculation, sensitivity analyzer of loudness (SOLO), in-house program is developed. A 1/4 scale car cavity model is optimized to show the effectiveness of the proposed method.

  • PDF

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

A Study on Contribution Analysis using Operational Transfer Path Analysis based on the Correlation between Subjective Evaluation and Zwicker's Sound Quality Index for Sound Quality of Forklifts (지게차의 주관적 음질평가와 Zwicker 음질지수의 상관관계 및 전달경로분석법(OTPA)을 활용한 음질 기여도 분석)

  • Kim, Beom Soo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2016
  • Recently, drivers have begun to regard comfort in the cabin as one of the most important factors in construction equipment like forklifts. Accordingly, it has become more important to design a forklift cabin with a better sound quality as well as lower sound level, which can make a driver more comfortable. In this paper, the correlation between subjective evaluation and Zwicker's sound quality index was analyzed through a blind test by a few workers in forklifts and other construction equipment in several countries. Correlation analysis showed that Loudness and Sharpness were ranked in sequence, and tendencies were different from country to country. Also, contribution analysis for Loudness and Sharpness using operational transfer path analysis (OTPA), which is widely used in the field of noise, vibration, and harshness (NVH), was performed. However, Loudness and Sharpness cannot be used with OTPA directly because there are no linear relationships between the sources and receivers. In this paper, both are calculated by applying the DIN 45631 method with a contribution rate (%) of 1/3 Octave Sound Pressure Level by OTPA method in addition to considering spectral masking.

Sound Quality Analysis of Water Turbing Generator Noise using Zwicker Parameter (Zwicker 파라미터를 이용한 수차발전기 소음의 음질분석)

  • Kook, Joung-Hun;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.273-277
    • /
    • 2007
  • In case of the Hydraulic Turbine Dynamo operating for Waterpower Generation, it makes very huge and loud noises, and it influences bad effect physically as same as mentally to those people who are working inside of power plant, and brings the decline of an effective working efficiency. However, its evaluation method or measure about such noise reflects merely its physical attribute which is sensuous Loudness of the Noise itself, since the accumulation effect of Noise or the meaning connected with psychological response did not reflect, it is the actual state that a rational evaluation is unable to expect. Consequently, this Study has attempted to evaluate the Noise of Hydraulic Turbine Dynamo by analyzing the sound quality using Zwicker‘s Psychological Acoustic Parameter, after classification by its positions of the Noise occurring at Hydraulic Turbine Dynamo.

  • PDF

Psychoacoustic Characteristics of Fibers

  • Yi, Eunjou;Cho, Gilsoo
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • In order to investigate psychoacoustic characteristics of fibers, and to compare them with sound physical parameters, each sound of 25 different fabrics consisted of a single fiber such as wool, cotton, silk, polyester, and nylon was recorded. Sounds of specimens were transformed into critical band diagram and psychoacoustic characteristics including loudness and sharpness for each sound were calculated based on Zwicker's models. Physical parameters such as the level pressure of total sound (LPT), level ranges (ΔL), frequency differences (Δf), AR coefficients (ARC, ARF, ARE) were obtained in fast fourier transform (FFT) spectrum. Nylon taffeta showed higher values for loudness than 2.5 sone corresponding to human low conversation, while most silk fibers generated less louder showing lower values for loudness than 1.0 sone. Wool fibers had higher loudness mean value than that of cotton, while the two fibers didn't differ in LPT. Loudness showed high positive correlation coefficients with both LPT and ARC. Sharpness values were higher for wool fiber group than other fibers. Sharpness was not concerned with loudness, LPT, and ARC, but the fabrics with higher values for sharpness tended to show higher ΔL.

  • PDF