• Title/Summary/Keyword: ZnS quantum dots

Search Result 60, Processing Time 0.031 seconds

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • Kim, Gyeong-Nam;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Luminescence Properties of Cd-Free InZnP/ZnSe/ZnS Core/Shell Quantum Dots (비카드뮴계 InZnP/ZnSe/ZnS 코어쉘 양자점의 발광 특성)

  • Lee, Young-Ki;Lee, Min-Sang;Lee, Jeong-Mi;Won, Dae-Hee;Kim, Jong-Man
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2021
  • In this work, we synthesized alloy-core InZnP quantum dots, which are more efficient than single-core InP quantum dots, using a solution process method. The effect of synthesis conditions of alloy core on optical properties was investigated. We also investigated the conditions that make up the gradient shell to minimize defects caused by lattice mismatch between the InZnP core and ZnS is 7.7%. The stable synthesis temperature of the InZnP alloy core was 200℃. Quantum dots consisting of three layered ZnSe gradient shell and single layered ZnS exhibited the best optical property. The properties of quantum dots synthesized in 100 ml and in 2,000 ml flasks were almost equal.

The Effect of Temperature on the Photoluminescence Properties of the InZnP/ZnSe/ZnS (Core/Multishell) Quantum Dots (온도에 따른 InZnP/ZnSe/ZnS (핵/다중껍질) 양자점의 형광 특성 변화)

  • Son, Min Ji;Jung, Hyunsung;Lee, Younki;Koo, Eunhae;Bang, Jiwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.443-449
    • /
    • 2018
  • We investigated the temperature-dependent photoluminescence spectroscopy of colloidal InZnP/ZnSe/ZnS (core/shell/shell) quantum dots with varying ZnSe and ZnS shell thickness in the 278~363 K temperature range. Temperature-dependent photoluminescence of the InZnP-based quantum dot samples reveal red-shifting of the photoluminescence peaks, thermal quenching of photoluminescence, and broadening of bandwidth with increasing temperature. The degree of band-gap shifting and line broadening as a function of temperature is affected little by shell composition and thickness. However, the thermal quenching of the photoluminescence is strongly dependent on the shell components. The irreversible photoluminescence quenching behavior is dominant for thin-shell-deposited InZnP quantum dots, whereas thick-shelled InZnP quantum dots exhibit superior thermal stability of the photoluminescence intensity.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Nanocrystalline $Y_3Al_5O_{12}$:Ce Phosphor-Based White Light-Emitting Diodes Embedded with CdS:Mn/ZnS Core/Shell Quantum Dots

  • Kim, Jong-Uk;Lee, Dong-Kyoon;Lee, Jong-Jin;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.588-590
    • /
    • 2008
  • Yellow-emitting $Y_3Al_5O_{12}$:Ce nanocrystalline phosphor and orange-emitting CdS:Mn/ZnS core/shell quantum dots were prepared by a modified polyol and a reverse micelle chemistry, respectively. To compensate a poor color rendering index of YAG:Ce nanocrystalline phosphor due to the lack of red spectral component, CdS:Mn/ZnS quantum dots were blended into YAG:Ce. Based on spectral evolutions in the blended systems, hybrid white light emitting diodes are fabricated and characterized.

  • PDF

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian;Greco, Tonino;Wedel, Armin
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots

  • Mehrabian, Masood;Afarideh, Hossein;Mirabbaszadeh, Kavoos;Lianshan, Li;Zhiyong, Tang
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.307-316
    • /
    • 2014
  • Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).

The Effects of Oxygen Plasma and Cross-link Process on Quantum-dot Light Emitting Diodes

  • Cho, Nam-Kwang;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.215-215
    • /
    • 2014
  • Red color light emitting diodes (LEDs) were fabricated using CdSe/CdZnS quantum dots (QDs). During the device fabrication process, oxygen plasma treatment on the ITO surface was performed to improve the interfacial contact between ITO anode and the hole injection layer. CdSe/CdZnS quantum dots were cross-linked to remove their surrounded organic surfactants. The device shows red emission at 622 nm, which is consistent with the dimension of the QDs (band gap=1.99 eV). The luminance shows 6026% improvement compared with that of LEDs fabricated without oxygen plasma treatment and quantum dots cross-linking process. This approach would be useful for the fabrication of high-performance QLEDs with ITO electrode and PEDOT:PSS hole injection layers.

  • PDF