Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.9

Luminescence Properties of Cd-Free InZnP/ZnSe/ZnS Core/Shell Quantum Dots  

Lee, Young-Ki (Department of Renewable Energy Engineering, Uiduk University)
Lee, Min-Sang (Technical Research Center, PLT Co., Ltd)
Lee, Jeong-Mi (Department of Electronic and Information Material Engineering, Jeonbuk National University)
Won, Dae-Hee (College of Liberal Arts, Wonkwang University)
Kim, Jong-Man (Department of Electricity and New & Renewable Energy, Jeonnam State University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 454-460 More about this Journal
Abstract
In this work, we synthesized alloy-core InZnP quantum dots, which are more efficient than single-core InP quantum dots, using a solution process method. The effect of synthesis conditions of alloy core on optical properties was investigated. We also investigated the conditions that make up the gradient shell to minimize defects caused by lattice mismatch between the InZnP core and ZnS is 7.7%. The stable synthesis temperature of the InZnP alloy core was 200℃. Quantum dots consisting of three layered ZnSe gradient shell and single layered ZnS exhibited the best optical property. The properties of quantum dots synthesized in 100 ml and in 2,000 ml flasks were almost equal.
Keywords
Alloy core; InZnP; Quantum dots; Gradient shell; Optical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, Laser Photonics Rev., 8, 73 (2014). [DOI: https://doi.org/10.1002/lpor.201300024]   DOI
2 R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O'Brien, and D. J. Binks, Small, 11, 1548 (2015). [DOI: https://doi.org/10.1002/smll.201402264]   DOI
3 K. D. Wegner, F. Dussert, D. Truffier-Boutry, A. Benayad, D. Beal, L. Mattera, W. L. Ling, M. Carriere, and P. Reiss, Front. Chem., 27, 466 (2019). [DOI: https://doi.org/10.3389/fchem.2019.00466]   DOI
4 L. E. Brus, J. Chem. Phys., 80, 4403 (1984). [DOI: https://doi.org/10.1063/1.447218]   DOI
5 U.T.D. Thuy, P. Reiss, and N. Q. Liem, Appl. Phys. Lett., 97, 193104 (2010). [DOI: https://doi.org/10.1063/1.3515417]   DOI
6 M. A. Walling, J. A. Novak, and J.R.E. Shepard, Int. J. Mol. Sci., 10, 441 (2009). [DOI: https://doi.org/10.3390/ijms10020441]   DOI
7 A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popovic, B. J. Walker, D. G. Nocera, and M. G. Bawendi, Chem. Sci., 3, 2028 (2012). [DOI: https://doi.org/10.1039/C2SC00561A]   DOI
8 M. D. Tessier, D. Dupont, K. De Nolf, J. De Roo, and Z. Hens, Chem. Mater., 27, 4893 (2015). [DOI: https://doi.org/10.1021/acs.chemmater.5b02138]   DOI
9 Y. Altintas, M. Y. Talpur, and E. Mutlugun, Opt. Express, 25, 28371 (2017). [DOI: https://doi.org/10.1364/OE.25.028371]   DOI
10 International Environmental Regulation Analysis Report, 312-19-019, 2 (2019).
11 F. Pietra, N. Kirkwood, L. De Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, Chem. Mater., 29, 5192 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00848]   DOI
12 F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, ACS Nano, 10, 4754 (2016). [DOI: https://doi.org/10.1021/acsnano.6b01266]   DOI
13 R. D. Vengrenovich, Y. V. Gudyma, and S. V. Yarema, Semiconductors, 35, 1378 (2001). [DOI: https://doi.org/10.1134/1.1427975]   DOI
14 N.T.K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev., 114, 7610 (2014). [DOI: https://doi.org/10.1021/cr400544s]   DOI
15 I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc., 128, 2385 (2006). [DOI: https://doi.org/10.1021/ja056494n]   DOI