Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.7.443

The Effect of Temperature on the Photoluminescence Properties of the InZnP/ZnSe/ZnS (Core/Multishell) Quantum Dots  

Son, Min Ji (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Jung, Hyunsung (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Lee, Younki (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Koo, Eunhae (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Bang, Jiwon (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.7, 2018 , pp. 443-449 More about this Journal
Abstract
We investigated the temperature-dependent photoluminescence spectroscopy of colloidal InZnP/ZnSe/ZnS (core/shell/shell) quantum dots with varying ZnSe and ZnS shell thickness in the 278~363 K temperature range. Temperature-dependent photoluminescence of the InZnP-based quantum dot samples reveal red-shifting of the photoluminescence peaks, thermal quenching of photoluminescence, and broadening of bandwidth with increasing temperature. The degree of band-gap shifting and line broadening as a function of temperature is affected little by shell composition and thickness. However, the thermal quenching of the photoluminescence is strongly dependent on the shell components. The irreversible photoluminescence quenching behavior is dominant for thin-shell-deposited InZnP quantum dots, whereas thick-shelled InZnP quantum dots exhibit superior thermal stability of the photoluminescence intensity.
Keywords
InP; Quantum dots; Photoluminescence; Temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998). [DOI: https://doi.org/10.1126/science.281.5385.2013]   DOI
2 J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater., 12, 1102 (2000). [DOI: https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J]   DOI
3 J. Owen and L. Brus, J. Am. Chem. Soc., 139, 10939 (2017). [DOI: https://doi.org/10.1021/jacs.7b05267]   DOI
4 Y. Jiang, S. Y. Cho, and M. Shim, J. Mater. Chem. C, 6, 2618 (2018). [DOI: https://doi.org/10.1039/C7TC05972H]   DOI
5 K. S. Cho, K. Heo, C. W. Baik, J. Y. Choi, H. Jeong, S. Hwang, and S. Y. Lee, Nat. Commun., 8, 840 (2017). [DOI: https://doi.org/10.1038/s41467-017-00893-x]   DOI
6 R. Liu, B. P. Bloom, D. H. Waldeck, P. Zhang, and D. N. Beratan, J. Phys. Chem. C, 122, 5924 (2018). [DOI: https://doi.org/10.1021/acs.jpcc.8b00010]   DOI
7 P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, J. Am. Chem. Soc., 128, 13320 (2006). [DOI: https://doi.org/10.1021/ja0618999]   DOI
8 T. T. Xuan, J. Q. Liu, C. Y. Yu, R. J. Xie, and H. L. Li, Sci. Rep., 6, 24459 (2016). [DOI: https://doi.org/10.1038/srep24459]   DOI
9 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, 538 (2005). [DOI: https://doi.org/10.1126/science.1104274]   DOI
10 B. Xing, W. Li, X. Wang, H. Dou, L. Wang, K. Sun, X. He, J. Han, H. Xiao, J. Miao, and Y. Li, J. Mater. Chem., 20, 5664 (2010). [DOI: https://doi.org/10.1039/C0JM00221F]   DOI
11 E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, Chem. Mater., 29, 4236 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00254]   DOI
12 S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, Chem. Mater., 28, 2491 (2016) [DOI: https://doi.org/10.1021/acs.chemmater.5b05044]   DOI
13 W. Shen, H. Tang, X. Yang, Z. Cao, T. Cheng, X. Wang, Z. Tan, J. You, and Z. Deng, J. Mater. Chem. C, 5, 8243 (2017). [DOI: https://doi.org/10.1039/C7TC02927F]   DOI
14 P. Ramasamy, N. Kim, Y. S. Kang, O. Ramirez, and J. S. Lee, Chem. Mater., 29, 6893 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b02204]   DOI
15 P. Ramasamy, K. J. Ko, J. W. Kang, and J. S. Lee, Chem. Mater., 30, 3643 (2018). [DOI: https://doi.org/10.1021/acs.hemmater.8b02049]   DOI
16 F. Pietra, L. D. Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, ACS Nano, 10, 4754 (2016). [DOI: https://doi.org/10.1021/acsnano.6b01266]   DOI
17 F. Pietra, N. Kirkwood, L. D. Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, Chem. Mater., 29, 5192 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00848]   DOI
18 J. P. Park, J. J. Lee, and S. W. Kim, Sci. Rep., 6, 30094 (2016). [DOI: https://doi.org/10.1038/srep30094]   DOI
19 J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, Chem. Mater., 23, 4459 (2011). [DOI: https://doi.org/10.1021/cm201550w]   DOI
20 S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, and J. Bang, J. Phys. Chem. C, 121, 26054 (2017). [DOI: https://doi.org/10.1021/acs.jpcc.7b06301]   DOI
21 B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J. B. Lee, T. Joo, and S. Kim, J. Phys. Chem. C, 115, 436 (2011). [DOI: https://doi.org/10.1021/jp109229u]   DOI
22 K. P. O'Donnell and X. Chen, Appl. Phys. Lett., 58, 2924 (1998). [DOI: https://doi.org/10.1063/1.104723]
23 H. Chen, J. He, and S. T. Wu, IEEE J. Sel. Top. Quantum Electron., 23, 1 (2017). [DOI: https://doi.org/10.1109/JSTQE.2017.2649466]
24 J. Zhang, J. Wang, T. Yan, Y. Peng, D. Xu, and D. Deng, J. Mater. Chem. B, 5, 8152 (2017). [DOI: https://doi.org/10.1039/C7TB02324C]   DOI
25 D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B, 108, 18826 (2004). [DOI: https://doi.org/10.1021/jp046481g]   DOI
26 X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998). [DOI: https://doi.org/10.1021/ja9805425]   DOI
27 G. A. Slack, Solid State Phys., 34, 1 (1979). [DOI: https://doi.org/10.1016/S0081-1947(08)60359-8]
28 Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donega, and A. Meijerink, ACS Nano, 6, 9058 (2012). [DOI: https://doi.org/10.1021/nn303217q]   DOI