DOI QR코드

DOI QR Code

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim (Nano-composite Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2022.11.02
  • Accepted : 2022.12.22
  • Published : 2022.12.28

Abstract

We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Keywords

Acknowledgement

The authors are appreciated for the financial support by the project of nano-material development of Korean national research foundation (NRF-2021M3H4A6A03103774) and the strategic material development program of Korea Institute of Ceramic Engineering and Technology (KPP 21003)

References

  1. L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns and G. Chaudhuri: Proc. Natl. Acad. Sci., USA, 84 (1987) 9265. https://doi.org/10.1073/pnas.84.24.9265
  2. R. M. J. Palmer, A. G. Ferrige and S. Moncada: Nature, 327 (1987) 524. https://doi.org/10.1038/327524a0
  3. J. Garthwaite: Eur. J. Neurosci., 27 (2008) 2783. https://doi.org/10.1111/j.1460-9568.2008.06285.x
  4. C. Bogdan: Nat. Immunol., 2 (2001) 907. https://doi.org/10.1038/ni1001-907
  5. D. Fukumura, S. Kashiwagi and R. K. Jain: Nat. Rev. Cancer, 6 (2006) 521. https://doi.org/10.1038/nrc1910
  6. S. Mocellin, V. Bronte and D. Nitti: Med. Res. Rev., 27 (2007) 317. https://doi.org/10.1002/med.20092
  7. H. Hong, J. Sun and W. Cai: Free Radical Biol. Med., 47 (2009) 684.
  8. G. Sivaraman, T. Anand and D. Chellappa: ChemPlusChem, 7 (2014) 1761.
  9. H. Yu, X. Zhang, Y. Xiao, W. Zou, L. Wang and L. Jin: Anal. Chem., 85 (2013) 7076. https://doi.org/10.1021/ac401916z
  10. H. Yu, L. Jin, Y. Dai, H. Li and Y. Xiao: New J. Chem., 37 (2013) 1688.
  11. E. Koo and J.-C. Lee: J. of Nanomater., 27605 (2014) 1.
  12. L.-H. Yang, D. J. Ahn and E. Koo: Mater. Sci. Eng., C, 69 (2016) 625. https://doi.org/10.1016/j.msec.2016.07.021
  13. L.-H. Yang, D. J. Ahn and E. Koo: BioChip, 12 (2018) 340. https://doi.org/10.1007/s13206-018-2406-x
  14. H. Yu, Y. Xiao and L. Jin: J. Am. Chem. Soc., 134 (2012) 17486. https://doi.org/10.1021/ja308967u
  15. G. Sivaraman, T. Anand and D. Chellappa: Analyst, 137 (2012) 5881. https://doi.org/10.1039/c2an36209k
  16. G. Sivaraman, V. Sathiyaraja and D. Chellappa: J. Lumin., 145 (2014) 480. https://doi.org/10.1016/j.jlumin.2013.08.018
  17. G. Sivaraman and D. Chellappa: J. Mater. Chem., B, 1 (2013) 5768. https://doi.org/10.1039/c3tb21041c
  18. T. Nagano and T. Yoshimura: Chem. Rev., 102 (2002) 1235. https://doi.org/10.1021/cr010152s
  19. M. H. Lim and S. J. Lippard: J. Am. Chem. Soc., 127 (2005) 12170. https://doi.org/10.1021/ja053150o
  20. M. H. Lim, D. Xu and S. J. Lippard: Nat. Chem. Bio., 2 (2006) 375. https://doi.org/10.1038/nchembio794
  21. S. Wang, M.-Y. Han and D. Huang: J. Am. Chem. Soc., 131 (2009) 11692. https://doi.org/10.1021/ja904824w
  22. M. Han, X. Gao, J. Z. Su and S. Nie: Nat. Biotechnol., 19 (2001) 631. https://doi.org/10.1038/90228
  23. Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain and M. G. Bawendi: Adv. Mater., 16 (2004) 2092. https://doi.org/10.1002/adma.200400237
  24. J. Yan, M. C. Estevez, J. E. Smith, K. Wang, X. He, L. Wang and W. Tana: Nano Today, 2 (2007) 44.
  25. X. Zhao, R. T.-Dytioco and W. Tan: J. Am. Chem. Soc., 125 (2003) 11474. https://doi.org/10.1021/ja0358854
  26. D.-S. Lee, J.-C. Lee, E.-H. Koo and J.-H. Lee: J. Kor. Phys. Soc., 57 (2010) 1111. https://doi.org/10.3938/jkps.57.1111
  27. S. A. Hilderbrand and S. J. Lippard: Inorg. Chem., 43 (2004). 4674. https://doi.org/10.1021/ic049776h
  28. M. H. Lim and S. J. Lippard: Inorg. Chem., 43 (2004) 6366. https://doi.org/10.1021/ic035418n
  29. J. Jasieniak, L. Smith, J. Embden and P. Mulvaney and M. Califan: J. Phys. Chem., C, 113(2009) 19468. https://doi.org/10.1021/jp906827m