Browse > Article
http://dx.doi.org/10.1080/15980316.2011.683537

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device  

Ippen, Christian (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research)
Greco, Tonino (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research)
Wedel, Armin (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research)
Publication Information
Abstract
Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.
Keywords
indium phosphide; multishell; colloidal quantum dots; QLED;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Kim, P.O. Anikeeva, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawendi, and V. Bulovicì, Nano Lett. 8, 4513 (2008).   DOI   ScienceOn
2 D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 1, 207 (2001).   DOI   ScienceOn
3 R. Xie, D. Battaglia, and X. Peng, J. Am. Chem. Soc. 129, 15432 (2007).   DOI   ScienceOn
4 P. Mushonga, M. Onani, A.M. Madiehe, and M. Meyer, J. Nanomater. (2011). doi:10.1155/2012/869284
5 B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).   DOI   ScienceOn
6 P. Reiss, M. Protiere, and L. Li, Small 5, 154 (2009).   DOI   ScienceOn
7 D.V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H.Weller, J. Phys. Chem. B 108, 18826 (2004).   DOI   ScienceOn
8 R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, J. Am. Chem. Soc. 127, 7480 (2005).   DOI   ScienceOn
9 L. Li and P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008).   DOI   ScienceOn
10 K. Huang, R. Demadrille, M.G. Silly, F. Sirotti, P. Reiss, and O. Renault, ACS Nano 4, 4799 (2010).   DOI   ScienceOn
11 J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, Adv. Mater. 20, 4068 (2008).   DOI   ScienceOn
12 J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, Chem. Mater. 23, 4459 (2011).   DOI   ScienceOn
13 D. Bera, L. Qian, T.-K. Tseng, and P.H. Holloway, Materials 3, 2260 (2010).   DOI