Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.4.307

Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots  

Mehrabian, Masood (Department of Physics, Amirkabir University of Technology)
Afarideh, Hossein (Department of Physics, Amirkabir University of Technology)
Mirabbaszadeh, Kavoos (Department of Physics, Amirkabir University of Technology)
Lianshan, Li (Laboratory for Nanomaterials, National Center for Nanoscience and Technology)
Zhiyong, Tang (Laboratory for Nanomaterials, National Center for Nanoscience and Technology)
Publication Information
Journal of the Optical Society of Korea / v.18, no.4, 2014 , pp. 307-316 More about this Journal
Abstract
Improved power conversion efficiency of hybrid solar cells with ITO/ZnO seed layer/ZnO NRs/ZnS QDs/P3HT/PCBM/Ag structure was obtained by optimizing the growth period of ZnO nanorods (NRs). ZnO NRs were grown using a hydrothermal method on ZnO seed layers, while ZnS quantum dots (QDs) (average thickness about 24 nm) were fabricated on the ZnO NRs by the successive ionic layer adsorption and reaction (SILAR) technique. Morphology, crystalline structure and optical absorption of layers were analyzed by a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV-Visible absorption spectra, respectively. The XRD results implied that ZnS QDs were in the cubic phase (sphalerite). Other experimental results showed that the maximum power conversion efficiency of 4.09% was obtained for a device based on ZnO NR10 under an illumination of one Sun (AM 1.5G, $100mW/cm^2$).
Keywords
ZnO nanorods; ZnS quantum dots; Hydrothermal method; Spin-assisted SILAR technique; Solar cell;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Q. C. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solutions," Chem. Mater. 17, 1001-1006 (2005).   DOI   ScienceOn
2 O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, "Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria," J. Phys. D: Appl. Phys. ,42, 225305 (10pp) (2009).   DOI   ScienceOn
3 S. H. Im, H. J. Kim, and S. I. Seok, "Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method," Nanotechnology 22, 395502 (5pp) (2011).   DOI   ScienceOn
4 Z. Chen and L. Gao, "A facile route to ZnO nanorod arrays using wet chemical method," Journal of Crystal Growth 293, 522-527 (2006).   DOI   ScienceOn
5 S. Hullavarad, N. Hullavarad, D. Look, and B. Claflin, "Persistent photoconductivity studies in nanostructured ZnO UV sensors," Nanoscale Res. Lett. 4, 1421-1427 (2009).   DOI   ScienceOn
6 Z. L. Wang, X. Y. Kong, and J. M. Zuo, "Induced growth of asymmetric nanocantilever arrays on polar surfaces," Phys. Rev. Lett. 91, 185502 (4 pp) (2003).   DOI   ScienceOn
7 L. Zhang, D. Qin, G. Yang, and Q. Zhang, "The investigation on synthesis and optical properties of zns:co nanocrystals by using hydrothermal method," Chalcogenide Letters 9, 93-98 (2012).
8 A. M. Palve and S. S. Garje, "A facile synthesis of ZnS nanocrystallites by pyrolysis of single molecule precursors, Zn $(cinnamtscz)_{2}$ and $ZnCl_{2}$ $(cinnamtsczH)_{2}$," Bull. Mater. Sci. 34, 667-671 (2011).   DOI   ScienceOn
9 B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, "Valence band alignment at cadmium selenide quantum dot and Zinc oxide (1010) interfaces," J. Phys. Chem. C 112, 8419-8423 (2008).   DOI   ScienceOn
10 S. H. Deulkar, C. H. Bhosale, and M. Sharon, "A comparative study of structural, compositional, thermal and optical properties of non stoichiometric (Zn, Fe) S chalcogenide pellets and thin films," J. Phys. Chem. Solids 65, 1879-1885 (2004).   DOI   ScienceOn
11 J. Vidal, O. de Melo, O. Vigil, N. Lopez, G. Contreras- Puente, and O. Zelaya-Angel, "Influence of magnetic field and type of substrate on the growth of ZnS films by chemical bath," Thin Solid Films 419, 118-123 (2002).   DOI   ScienceOn
12 L. W. Chong, H. T. Chien, and Y. L. Lee, "Assembly of CdSe onto mesoporous $TiO_{2}$ films induced by a selfassembled monolayer for quantum dot-sensitized solar cell applications," Journal of Power Sources 195, 5109-5113 (2010).   DOI   ScienceOn
13 D. Denzler, M. Olschewski, and K. Sattler, "Luminescence studies of localized gap states in colloidal ZnS nanocrystals," J. Appl. Phys. 84, 2841-2845 (1998).   DOI   ScienceOn
14 T. B. Nasr, N. Kamoun, and C. Guasch, "Structure, surface composition, and electronic properties of Zinc sulphide thin films," Materials Chemistry and Physics 96, 84-89 (2006).   DOI   ScienceOn
15 B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, and J. C. Bernede, "Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis," Mater. Chem. Phys. 68, 175-179 (2001).   DOI   ScienceOn
16 X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, "ZnO nanoparticulate thin film: Preparation, characterization and gas-sensing property," Sens. Actuators B 102, 248-252 (2004).   DOI   ScienceOn
17 J. H. Park, J. S. Kim, and J. T. Kim, "Luminescent properties of $BaSi_{2}O_{5}:Eu^{2+}$ phosphor film fabricated by spin-coating of Ba-Eu precursor on $SiO_{2}$ glass," J. Opt. Soc. Korea 18, 45-49 (2014).   과학기술학회마을   DOI   ScienceOn
18 H. Sirringhaus, N. Tessler, and R. H. Friend, "Integrated optoelectronic devices based on conjugated polymers," Science 280, 1741-1744 (1998).   DOI   ScienceOn
19 I. Riedel and V. Dyakonov, "Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices," Phys. Stat. Sol. (a) 201, 1332-1341 (2004).   DOI   ScienceOn
20 D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, "Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites," Nanotechnology 15, 1317-1323 (2004).   DOI   ScienceOn
21 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Nature Materials 4, 864-868 (2005).   DOI   ScienceOn
22 S. K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C. S. Bhatia, P. K. Bhatnagar, and P. C. Mathur, "Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell," Organic Electronics 13, 710-714 (2012).   DOI   ScienceOn
23 D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices," J. Phys. Chem. C 111, 16640-16645 (2007).   DOI   ScienceOn
24 Y. Hames, Z. Alpaslan, A. Kosemen, S. E. San, and Y. Yerli, "Electrochemically grown ZnO nanorods for hybrid solar cell applications," Solar Energy 84, 426-431 (2010).   DOI   ScienceOn
25 M. Akhlaghi, F. Emami, M. S. Sadeghi, and M. Yazdanypoor, "Simulation and optimization of nonperiodic plasmonic nano-particles," J. Opt. Soc. Korea 18, 82-88 (2014).   DOI   ScienceOn
26 D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites," Thin Solid Films 496, 26-29 (2006).   DOI   ScienceOn
27 A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O'Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, "Hybrid polymer/metal oxide solar cells based on ZnO columnar structures," J. Mater. Chem. 16, 2088-2096 (2006).   DOI   ScienceOn
28 K. Sayama, H. Sugihara, and H. Arakawa, "Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye," Chemistry of Materials 10, 3825- 3832 (1998).   DOI   ScienceOn
29 K. Takanezawa, K. Tajima, and K. Hashimoto, "Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer," Appl. Phys. Lett. 93, 1-3 (2008).
30 C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer Verlag, Heidelberg, 2003).
31 N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science 258, 1474-1476 (1992).   DOI   ScienceOn
32 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor acceptor heterojunctions," Science 270, 1789-1791 (1995).   DOI   ScienceOn
33 D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, "Temperature dependent characteristics of poly (3 hexylthiophene)-fullerene based heterojunction organic solar cells," J. Appl. Phys. 93, 3376- 3383 (2002).
34 M. Helgesen, R. Sondergaard, and F. C. Krebs, "Advanced materials and processes for polymer solar cell devices," Journal of Materials Chemistry, 20 36-60 (2010).   DOI   ScienceOn
35 K. Kang and J. Kim, "Effect of sunlight polarization on the absorption efficiency of V-shaped organic solar cells," J. Opt. Soc. Korea 18, 9-14 (2014).   과학기술학회마을   DOI   ScienceOn
36 D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, "Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices," J. Phys. Chem. C 111, 16640-16645 (2007).   DOI   ScienceOn
37 W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science 295, 2425-2427 (2002).   DOI   ScienceOn
38 H. Fu, M. Choi, W. Luan, Y. S. Kim, and S. T. Tu, "Hybrid solar cells with an inverted structure: Nanodots incorporated ternary system," Solid-State Electronics 69, 50-54 (2012).   DOI   ScienceOn
39 E. C. Garnett and P. D. Yang, "Silicon nanowire radial p-n junction solar cells," Journal of the American Chemical Society 130, 9224-9225 (2008).   DOI   ScienceOn
40 M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nature Materials 4, 455-459 (2005).   DOI   ScienceOn
41 M. Zhong, D. Yang, J. Zhang, J. Y. Shi, X. L. Wang, and C. Li, "Improving the performance of CdS/P3HT hybrid inverted solar cells by interfacial modification," Solar Energy Materials and Solar Cells 96, 160-165 (2012).   DOI   ScienceOn
42 S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Sci. Technol. Adv. Mater. 10, 013001- 013018 (2009).   DOI   ScienceOn
43 Y. Myung, J. H. Kang, J. W. Choi, D. M. Jang, and J. Park, "Polytypic ZnCdSe shell layer on a ZnO nanowire array for enhanced solar cell efficiency," Journal of Materials Chemistry 22, 2157-2165 (2012).   DOI   ScienceOn
44 L. M. Li, Z. F. Du, C. C. Li, J. Zhang, and T. H. Wang, "Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature," Nanotechnology 18, 355606 (2007).   DOI   ScienceOn
45 J. B. Xia and X. W. Zhang, "Electronic structure of ZnO Wurtzite quantum wires," Eur. Phys. J. B 49, 415-420 (2006).   DOI
46 W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN," Adv. Mater. 16, 87-90 (2004).   DOI   ScienceOn
47 A. M. Lockett, P. J. Thomas, and P. O'Brien, "Influence of seeding layers on the morphology, density, and critical dimensions of ZnO nanostructures grown by chemical bath deposition," Journal of Physical Chemistry C 116, 8089- 8094 (2012).   DOI   ScienceOn
48 J. P. Liu, X. T. Huang, Y. Y. Li, X. X. Ji, Z. K. Li, X. He, and F. L. Sun, "Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: Direct solution synthesis, photoluminescence, and field emission," Journal of Physical Chemistry C 111, 4990-4997 (2007).
49 L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Adv. Mater. 15, 464-466 (2003).   DOI   ScienceOn
50 L. Y. Chen, Y. T. Yin, C.H. Chen, and J. W. Chiou, "Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method," Journal of Physical Chemistry C 115, 20913-20919 (2011).   DOI   ScienceOn
51 J.-S. Huang and C. F. Lin, "Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing," J. Appl. Phys. 103, 1-5 (2008).
52 M. F. Malek, M. Z. Sahdan, M. H. Mamat, M. Z. Musa, Z. Khusaimi, S. S. Husairi, N. D. Md Sin, and M. Rusop, "A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells," Applied Surface Science 275, 75-83 (2013).   DOI   ScienceOn
53 D. Li and H. Haneda, "Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition," J. Photochem. Photobiol. A Chem. 155, 171-178 (2003).   DOI   ScienceOn
54 S. Ferrere, A. Zaban, and B. A. Gregg, "Dye sensitization of nanocrystalline tin oxide by perylene derivatives," Journal of Physical Chemistry B 101, 4490-4493 (1997).   DOI   ScienceOn
55 K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, "Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes," Langmuir 16, 4688-4694 (2000).   DOI   ScienceOn
56 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, "Controlled growth of ZnO nanowires and their optical properties," Adv. Funct. Mater. 12, 323-331 (2002).   DOI   ScienceOn
57 M. Futsuhara, K. Yoshioka, and O. Takai, "Optical properties of Zinc oxynitride thin films Thin Solid Films 317, 322-325 (1998).   DOI   ScienceOn
58 D. Yun, X. Xia, S. Zhang, Z. Bian, R. Liu, and C. Huang, "ZnO nanorod arrays with different densities in hybrid photovoltaic devices: Fabrication and the density effect on performance," Chemical Physics Letters 516, 92-95 (2011).   DOI   ScienceOn
59 S. K. Dixit, S. Madan, D. Madhwal, J. Kumar, I. Singh, C. S. Bhatia, P. K. Bhatnagar, and P. C. Mathur, "Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT: CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell," Organic Electronics 13, 710-714 (2012).   DOI   ScienceOn
60 D. C. Lim, W. H. Shim, K. D. Kim, H. O. Seo, J. H. Lim, Y. Jeong, Y. D. Kim, and K. Lee, "Spontaneous formation of nanoripples on the surface of ZnO thin films as holeblocking layer of inverted organic solar cells," Solar Energy Materials & Solar Cells 95, 3036-3040 (2011).
61 J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica Status Solidi (b) 15, 627-637 (1996).
62 E. A. Davis and N. F. Motta, "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors," Philosophical Magazine 22, 903-922 (1970).   DOI
63 Y. M. Shen, C. S. Chen, P. C. Yang, S. Y. Ma, and C. F. Lin, "Improvement of surface morphology of thin films and performance by applying electric field on P3HT: PCBM based solar cells," Solar Energy Materials & Solar Cells 99, 263-267 (2012).   DOI   ScienceOn
64 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar Cell Efficiency Tables (version 39), Progress in Photovoltaics: Research and Applications 20, 12-20 (2012).   DOI   ScienceOn
65 S. Cook, R. Katoh, and A. Furube, "Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM," J. Phys. Chem. C 113, 2547-2552 (2009).   DOI   ScienceOn
66 S. Sun and N. S. Sariciftci, Organic Photovoltaics (Taylor & Francis, London, UK, 2005).