Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.6.453

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer  

Chang-Yeoul, Kim (Nano-composite Materials Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.29, no.6, 2022 , pp. 453-458 More about this Journal
Abstract
We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.
Keywords
Quantum dot; CdSe; Nitric oxide; Detection; Fluorescence resonance energy transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns and G. Chaudhuri: Proc. Natl. Acad. Sci., USA, 84 (1987) 9265.   DOI
2 R. M. J. Palmer, A. G. Ferrige and S. Moncada: Nature, 327 (1987) 524.   DOI
3 J. Garthwaite: Eur. J. Neurosci., 27 (2008) 2783.   DOI
4 C. Bogdan: Nat. Immunol., 2 (2001) 907.   DOI
5 D. Fukumura, S. Kashiwagi and R. K. Jain: Nat. Rev. Cancer, 6 (2006) 521.   DOI
6 S. Mocellin, V. Bronte and D. Nitti: Med. Res. Rev., 27 (2007) 317.   DOI
7 H. Hong, J. Sun and W. Cai: Free Radical Biol. Med., 47 (2009) 684.
8 G. Sivaraman, T. Anand and D. Chellappa: ChemPlusChem, 7 (2014) 1761.
9 H. Yu, L. Jin, Y. Dai, H. Li and Y. Xiao: New J. Chem., 37 (2013) 1688.
10 E. Koo and J.-C. Lee: J. of Nanomater., 27605 (2014) 1.
11 L.-H. Yang, D. J. Ahn and E. Koo: Mater. Sci. Eng., C, 69 (2016) 625.   DOI
12 L.-H. Yang, D. J. Ahn and E. Koo: BioChip, 12 (2018) 340.   DOI
13 H. Yu, Y. Xiao and L. Jin: J. Am. Chem. Soc., 134 (2012) 17486.   DOI
14 G. Sivaraman, T. Anand and D. Chellappa: Analyst, 137 (2012) 5881.   DOI
15 G. Sivaraman, V. Sathiyaraja and D. Chellappa: J. Lumin., 145 (2014) 480.   DOI
16 G. Sivaraman and D. Chellappa: J. Mater. Chem., B, 1 (2013) 5768.   DOI
17 T. Nagano and T. Yoshimura: Chem. Rev., 102 (2002) 1235.   DOI
18 M. H. Lim and S. J. Lippard: J. Am. Chem. Soc., 127 (2005) 12170.   DOI
19 M. H. Lim, D. Xu and S. J. Lippard: Nat. Chem. Bio., 2 (2006) 375.   DOI
20 S. Wang, M.-Y. Han and D. Huang: J. Am. Chem. Soc., 131 (2009) 11692.   DOI
21 M. Han, X. Gao, J. Z. Su and S. Nie: Nat. Biotechnol., 19 (2001) 631.   DOI
22 Y. Chan, J. P. Zimmer, M. Stroh, J. S. Steckel, R. K. Jain and M. G. Bawendi: Adv. Mater., 16 (2004) 2092.   DOI
23 J. Yan, M. C. Estevez, J. E. Smith, K. Wang, X. He, L. Wang and W. Tana: Nano Today, 2 (2007) 44.
24 M. H. Lim and S. J. Lippard: Inorg. Chem., 43 (2004) 6366.   DOI
25 X. Zhao, R. T.-Dytioco and W. Tan: J. Am. Chem. Soc., 125 (2003) 11474.   DOI
26 D.-S. Lee, J.-C. Lee, E.-H. Koo and J.-H. Lee: J. Kor. Phys. Soc., 57 (2010) 1111.   DOI
27 S. A. Hilderbrand and S. J. Lippard: Inorg. Chem., 43 (2004). 4674.   DOI
28 J. Jasieniak, L. Smith, J. Embden and P. Mulvaney and M. Califan: J. Phys. Chem., C, 113(2009) 19468.   DOI
29 H. Yu, X. Zhang, Y. Xiao, W. Zou, L. Wang and L. Jin: Anal. Chem., 85 (2013) 7076.   DOI