• Title/Summary/Keyword: ZnS: Cu

Search Result 1,084, Processing Time 0.03 seconds

Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 함량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.271-280
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were $70\%$ in main-element and $10\% in other 3 sub-elements, respectively. 1. Compared with orchadgrass, white clover showed relatively consistent differences in the content of micronutrients as influenced by treatments of the systematic variation. The contents of Mn and Cu in the forages were significantly influenced by the application rates of Mn and Cu, respectively. The contents of Fe and Zn in the forages, however, were not significantly different among these treatments. 2. Compared with orchardgrass in the Fe/cu trial, white clover had not only the low content of Cu but also the Cu content and yield of white clover were greatly decreased by the low rate of application of Cu. In the Mn/Zn trial, the $0/100\%$ resulted in the severe decrease of Mn-content in both forages. The low content of Mn in white clover tended to be negatively correlated to the Mn-chlorosis, inferior growth and flowering, and low yield. 3. In the Fe+Cu/Mn+Zn trial, the application with $0/100\%$ and $0/100\%$ resulted in the relatively great decrease of Cu and Mn contents, respectively. These traits in white clover tended to be negatively correlated to the inferior growth and flowering, and low yield 4. In the Fe/Mn/Cu/Zn trial, the content of every main-elements in the forages were increased especially in Mn. In addition, the contents of sub-elements were likely to be somewhat negatively influenced by the treatment of main-element respectively.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 損失과 磁性 特性)

  • Otsuki, E.;Kim, Jeong-Su
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite sample with different content of NiO and ZnO. The power loss, Pcv decreases monotonically with increasing temperature and attains to a certain value at around 100~120 degrees Celsius. The frequency dependence of Pcv can be explained by Pcv~f$^n$, and n is independent of the frequency, f up to 1 MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss(Ph) and residual loss(Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while Pcv-Ph is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}_i$ like following equations could be formularized. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ Where ${\mu}_0$ is permeability of vacuum, I$_s$ is saturation magnetization, K$_I$ is anisotropy constant, $s_0$ is internal heterogeneous stress, ${\lambda}_s$ is magnetostriction constant, b is unknown constant, and Wh is hysteresis loss per one cycle of excitation (Ph=Wh${\times}$f). Steinmetz constant of Ni-Cu-Zn ferrite, m=1.64~2.2 is smaller than that of Mn-Zn ferrites, which suggests the difference of loss mechanisms between these materials.

Chemical Bath Deposition of ZnS-based Buffer Layers for Cu2ZnSn(S,Se)4 Thin Film Solar

  • Choe, Hui-Su;Park, Min-A;O, Lee-Seul;Jeon, Jong-Ok;Pyo, Seong-Gyu;Kim, Jin-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.472.1-472.1
    • /
    • 2014
  • 현재 Cu(In,Ga)Se2나 Cu2ZnSn(S,Se)4 (CZTSSe)계 박막태양전지의 버퍼층으로 가장 많이 사용되는 물질은 CdS이다. 하지만 Cd의 독성 문제로 인해 사용에 제약이 있고, CdS의 작은 밴드갭(~2.4 eV)으로 인해 단 파장 영역에서 광활성층의 빛 흡수를 저해하는 문제 때문에 새로운 대체 물질을 찾으려는 연구가 많이 이루어지고 있다. 이러한 관점에서, ZnS계 물질은 독성 원소인 Cd을 사용하지 않고, 3.6 eV 정도의 큰 밴드갭을 가지기 때문에, CdS 버퍼층을 대체하기 위한 물질로 관심을 받고 있다. ZnS계 버퍼층을 증착하는 위해 chemical bath deposition (CBD), molecular beam epitaxy (MBE), thermal evaporation, spray pyrolysis, sputtering, elecrtrodepostion 등의 다양한 공정이 사용될 수 있다. 본 연구에서는 상기의 다양한 공정 가운데, 공정 단가가 낮고, 대면적 공정에 용이한 CBD 공정을 이용하여 ZnS계 버퍼층을 증착하는 연구를 수행하였다. 용액의 조성, 농도, 공정 온도, 시간 등을 비롯한 다양한 공정 변수가 ZnS계 박막의 morphology, 조성, 결정성, 광학적 특성 등 다양한 특성에 미치는 영향이 체계적으로 연구되었다. 또한, 상기 ZnS계 버퍼층을 CZTSSe 박막태양전지에 적용하여 CdS를 성공적으로 대체할 수 있음을 확인하였다. 본 연구를 통하여 ZnS계 버퍼층이 향후 친환경적인 박막태양전지 제조에 활용될 수 있는 가능성을 확인할 수 있었다.

  • PDF

The characteristic of Cu2ZnSnS4 thin film solar cells prepared by sputtering CuSn and CuZn alloy targets

  • Lu, Yilei;Wang, Shurong;Ma, Xun;Xu, Xin;Yang, Shuai;Li, Yaobin;Tang, Zhen
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1571-1576
    • /
    • 2018
  • Recent study shows that the main reason for limiting CZTS device performance lies in the low open circuit voltage, and crucial factor that could affect the $V_{oc}$ is secondary phases like ZnS existing in absorber layer and its interfaces. In this work, the $Cu_2ZnSnS_4$ thin film solar cells were prepared by sputtering CuSn and CuZn alloy targets. Through tuning the Zn/Sn ratios of the CZTS thin films, the crystal structure, morphology, chemical composition and phase purity of CZTS thin films were characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Raman spectroscopy. The statistics data show that the CZTS solar cell with a ratio of Zn/Sn = 1.2 have the best power convention efficiency of 5.07%. After HCl etching process, the CZTS thin film solar cell with the highest efficiency 5.41% was obtained, which demonstrated that CZTS film solar cells with high efficiency could be developed by sputtering CuSn and CuZn alloy targets.

DNA Cleavage Induced by the Reaction of Salsolinol with Cu,Zn-Superoxide Dismutase

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2329-2332
    • /
    • 2007
  • Salsolinol, endogenous neurotoxin, is known to be involved in the pathogenesis of Parkinson's disease (PD). In the present study, we have investigated the oxidative damage of DNA induced by the reaction of salsolinol with Cu,Zn-SOD. When plasmid DNA incubated with salsolinol and Cu,Zn-SOD, DNA cleavage was proportional to the concentrations of salsolinol and Cu,Zn-SOD. The salsolinol/Cu,Zn-SOD system-mediated DNA cleavage was significantly inhibited by radical scavengers such as mannitol, ethanol and thiourea. These results indicated that free radicals might participate in DNA cleavage by the salsolinol/Cu,Zn-SOD system. Spectrophotometric study using a thiobarbituric acid showed that hydroxyl radical formation was proportional to the concentration of salsolinol and was inhibited by radical scavengers. These results indicated that hydroxyl radical generated in the reaction of salsolinol with Cu,Zn-SOD was implicated in the DNA cleavage. Catalase and copper chelators inhibited DNA cleavage and the production of hydroxyl radicals. These results suggest that DNA cleavage is mediated in the reaction of salsolinol with Cu,Zn-SOD via the generation of hydroxyl radical by a combination of the oxidation reaction of salsolinol and Fenton-like reaction of free copper ions released from oxidatively damaged SOD.

Comparison of Heavy Metals Analysis in Sediment (호소내 퇴적물의 중금속 분석 비교)

  • Park, Sun-Ku;Song, Ki-Bong;Cho, Ki-Hwan
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.173-179
    • /
    • 2001
  • The study was carried out to analyze the pollutant Fe, Cu, Cr, Zn, Cd for sediments collected from lake in K river basin. Three analytical methods currently used in Korea, Japan, U.S.A, were compared. Pretreatment using microwave digestion showed higher analytical results for Fe, Cu, Cr, Zn, Cd than Korean Official Method(KOM) and American Toxicity Characteristic Leaching Procedure(TCLP) Method. Also, analytical results using microwave digestion, TCLP and KOM were as follows: 38.1-48.0 mgFe/kg, 10.2-15.9 mgFe/kg AND 3.5-12.6 mgFe/kg, 37.0-50.1 mgCu/kg, 0.06-0.24 mgCu/kg and 0.01-0.03 mgCu/kg, 137.0-152.0 mgZn/kg, 0.67-0.82 mgZn/kg and 0.3-0.5 mgZn/kg, respectively. From this result, a new analytical method for the determination of heavy metal in sediment should be developed for the accurate estimation of pollution degree in sediment.

  • PDF

Synthesis of Nano-sized NiCuZn-ferrites for Chip Inductor and Properties with Calcination Temperature (칩인덕터용 NiCuZn-ferrites 나노 분말합성 및 하소 온도에 따른 특성 변화)

  • 허은광;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • In this study, nano-sized NiCuZn-ferrites for the multi-layered chip inductor application were prepared by a coprecipitation method and its electromagnetic properties were analyzed. Also, the property of low temperature sintering were studied with the initial heat treatment of powder.$(Ni_{0.4-x}Cu_xZn_{0.60})_{1+w}(Fe_2O_4)_{1-w}$ (x=0.2, w=0.03) were calcined at $300^{circ}C~750^{circ}C.$ The sintered NiCuZn-ferrites at $900^{\circ}C$ showed good apparent density $4.90g/cm^3,$ and magnetic properties of initial permeability 164 and quality factor 72. As the calcination temperature increase, the grain size of NiCuZn-ferrite increased with irregular grain distribution and its magnetic properties were deteriorated.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 손실과 자성 특성)

  • Otsuki E.;Kim Jeong-Su
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.3-11
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite samples with different content of NiO and ZnO. The power loss, Pcv decreases monotonically wi increasing temperature and attains to a certain value at around $100\~120$ degrees Celsius. The frequency dependence of Pcv can be explained by $Pcv\~f^n$', and n is independent of the frequency, f up to 1MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss, Ph and residual loss, (Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while (Pcv-Ph) is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}^i$ following equations could be formularized. $${\mu}_i{\mu}o=I_x\;^2/(K_1+bs_ol_s)\;\;\;\;(1)$$ $Wh=13.5(I_s\;^2/{\mu}_i{\mu}_o)\;\;\;\;(2)$$ Were ${\mu}_o$ is permeability of vacuum, $I_s$ saturation magnetization, $K_1$ anisotropy constant, $S_o$ internal heterogeneous stress, $I_s$, magnetostriction constant, b unknown constant. Wh hysteresis loss per one cycle of excitation (Ph: Wh*f). Steinmetz constant of Ni-Cu-Zn ferrites, $m=1.64\~2.2$ is smaller than the one of Mn-Zn ferrites, which suggests the difference of loss mechanism between these materials.

  • PDF

Fabrication of Cu2ZnSnS4 Films by Rapid Thermal Annealing of Cu/ZnSn/Cu Precursor Layer and Their Application to Solar Cells

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • $Cu_2ZnSnS_4$ thin film have been fabricated by rapid thermal annealing of dc-sputtered metal precursor with Cu/ZnSn/Cu stack in sulfur ambient. A CZTS film with a good uniformity was formed at $560^{\circ}C$ in 6 min. $Cu_2SnS_3$ and $Cu_3SnS_4$ secondary phases were present at $540^{\circ}C$ and a trace amount of $Cu_2SnS_3$ secondary phase was present at $560^{\circ}C$. Single-phase large-grained CZTS film with rough surface was formed at $560^{\circ}C$. Solar cell with best efficiency of 4.7% ($V_{oc}=632mV$, $j_{sc}=15.8mA/cm^2$, FF = 47.13%) for an area of $0.44cm^2$ was obtained for the CZTS absorber grown at $560^{\circ}C$ for 6 min. The existence of second phase at lower-temperature annealing and rough surface at higher-temperature annealing caused the degradation of cell performance. Also poor back contact by void formation deteriorated cell performance. The fill factor was below 0.5; it should be increased by minimizing voids at the CZTS/Mo interface. Our results suggest that CZTS absorbers can be grown by rapid thermal annealing of metallic precursors in sulfur ambient for short process times ranging in minutes.