DOI QR코드

DOI QR Code

The characteristic of Cu2ZnSnS4 thin film solar cells prepared by sputtering CuSn and CuZn alloy targets

  • Lu, Yilei (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Wang, Shurong (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Ma, Xun (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Xu, Xin (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Yang, Shuai (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Li, Yaobin (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University) ;
  • Tang, Zhen (Key Laboratory of Rural Energy Engineering in Yunnan Province, Yunnan Normal University)
  • 투고 : 2018.06.20
  • 심사 : 2018.10.11
  • 발행 : 2018.12.31

초록

Recent study shows that the main reason for limiting CZTS device performance lies in the low open circuit voltage, and crucial factor that could affect the $V_{oc}$ is secondary phases like ZnS existing in absorber layer and its interfaces. In this work, the $Cu_2ZnSnS_4$ thin film solar cells were prepared by sputtering CuSn and CuZn alloy targets. Through tuning the Zn/Sn ratios of the CZTS thin films, the crystal structure, morphology, chemical composition and phase purity of CZTS thin films were characterized by X-Ray Diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Raman spectroscopy. The statistics data show that the CZTS solar cell with a ratio of Zn/Sn = 1.2 have the best power convention efficiency of 5.07%. After HCl etching process, the CZTS thin film solar cell with the highest efficiency 5.41% was obtained, which demonstrated that CZTS film solar cells with high efficiency could be developed by sputtering CuSn and CuZn alloy targets.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Soumyadeep Sinha, Dip K. Nandi, Soo-Hyun Kim, et al., Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review, Sol. Energy Mater. Sol. Cells 176 (2018) 49-68. https://doi.org/10.1016/j.solmat.2017.09.044
  2. Jialiang Huang, Chang Yan, Kaiwen Sun, et al., Boosting the kesterite $Cu_2ZnSnS_4$ solar cells performance by diode laser annealing, Sol. Energy Mater. Sol. Cells 175 (2018) 71-76. https://doi.org/10.1016/j.solmat.2017.10.009
  3. Shih-Hsiung Wu, Kuan-Ta Huang, Hui-Ju Chen, et al., $Cu_2ZnSn(SxSe_{1-x})_4$ thin film solar cell with high sulfur content (x approximately 0.4) and low $V_{oc}$ deficit prepared using a post-sulfurization process, Sol. Energy Mater. Sol. Cells 175 (2018) 89-95. https://doi.org/10.1016/j.solmat.2017.09.036
  4. Rujun Sun, Daming Zhuang, Ming Zhao, et al., $Cu_2ZnSnSSe_4$ solar cells with 9.6% efficiency via selenizing Cu-Zn-Sn-S precursor sputtered from a quaternary target, Sol. Energy Mater. Sol. Cells 174 (2018) 42-49. https://doi.org/10.1016/j.solmat.2017.08.011
  5. Jianjun Li, Yi Zhang, Hongxia Wang, et al., On the growth process of $Cu_2ZnSn (S,Se)_4$ absorber layer formed by selenizing Cu-ZnS-SnS precursors and its photovoltaic performance, Sol. Energy Mater. Sol. Cells 132 (2015) 363-371. https://doi.org/10.1016/j.solmat.2014.09.023
  6. Byungha Shin, Oki Gunawan, Yu Zhu, et al., Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovolt. Res. Appl. 21 (2013) 72-76. https://doi.org/10.1002/pip.1174
  7. Maykel Courel, E. Valencia-Resendiz, J.A. Andrade-Arvizu, et al., Towards understanding poor performances in spray-deposited $Cu_2ZnSnS_4$ thin film solar cells, Sol. Energy Mater. Sol. Cells 159 (2017) 151-158. https://doi.org/10.1016/j.solmat.2016.09.004
  8. S.A. Vanalakar, G.L. Agawane, S.W. Shin, et al., A review on pulsed laser deposited CZTS thin films for solar cell applications, J. Alloys Compd. 619 (2015) 109-121. https://doi.org/10.1016/j.jallcom.2014.09.018
  9. Jiahua Tao, Leilei Chen, Huiyi Cao, et al., Co-electrodeposited $Cu_2ZnSnS_4$ thin-film solar cells with over 7% efficiency fabricated via fine tuning of the Zn content in absorber layers, Royal Society of Chemistry, J. Mater. Chem. A 4 (2016) 3798-3805. https://doi.org/10.1039/C5TA09636G
  10. Fangyang Liu, Jialiang Huang, Kaiwen Sun, Beyond 8% ultrathin kesterite $Cu_2ZnSnS_4$ solar cells by interface reaction route controlling and self-organized nanopattern at the back contact, NPG Asia Mater. 9 (2017) e401. https://doi.org/10.1038/am.2017.103
  11. Chang Yan, Kaiwen Sun, Jialiang Huang, Beyond 11% efficient sulfide kesterite $Cu_2Zn_xCd_{1-x}SnS_4$ solar cell: effects of cadmium alloying, ACS Energy Lett. 2 (2017) 930-936. https://doi.org/10.1021/acsenergylett.7b00129
  12. Wei Wang, Mark T. Winkler, Oki Gunawan, et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater. 4 (2014) 7.
  13. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Appl. Phys. 32 (1961) 510-512. https://doi.org/10.1063/1.1736034
  14. Daniel M. Tobbens, Galina Gurieva, Sergiu Levcenko, et al., Temperature dependency of Cu/Zn ordering in CZTSe kesterites determined by anomalous diffraction, Phys. Status Solidi B 1-8 (2016).
  15. Markus Neuschitzer, Yudania Sanchez, Simon Lopez-Marino, et al., Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink, Prog. Photovolt. Res. Appl. 23 (2015) 1660-1667. https://doi.org/10.1002/pip.2589
  16. Justus Just, M. Carolin, Sutter-Fella, Dirk Lutzenkirchen-Hecht, et al., Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films, Phys. Chem. Chem. Phys. (2016), https://doi.org/10.1039/C6CP00178E.
  17. Dahyun Nam, Soyeon Cho, Jun-Hyoung Sim, et al., Solar conversion efficiency and distribution of ZnS secondary phase in $Cu_2ZnSnS_4$ solar cells, Sol. Energy Mater. Sol. Cells 149 (2017) 226-231.
  18. M.P. Suryawanshi, Seung Wook Shin, U.V. Ghorpade, et al., Improved solar cell performance of $Cu_2ZnSnS_4$ (CZTS) thin films prepared by sulfurizing stacked precursor thin films via SILAR method, J. Alloys Compd. 671 (2016) 509-516. https://doi.org/10.1016/j.jallcom.2016.02.015
  19. Tajima Shin, Mitsutaro Umehara, Masaki Hasegawa, et al., $Cu_2ZnSnS_4$ photovoltaic cell with improved efficiency fabricated by high-temperature annealing after CdS buffer-layer deposition, Prog. Photovolt. Res. Appl. (2016), https://doi.org/10.1002/pip.2837.
  20. Huafei Guo, Changhao Ma, Kezhi Zhang, et al., Dual function of ultrathin Ti intermediate layers in CZTS solar cells: sulfur blocking and charge enhancement, Sol. Energy Mater. Sol. Cells 175 (2017) 20-28.
  21. Chang Yan, Kaiwen Sun, Fangyang Liu, et al., Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks, Sol. Energy Mater. Sol. Cells 160 (2017) 7-11. https://doi.org/10.1016/j.solmat.2016.09.027
  22. P.A. Fernandes, P.M.P. Salome, A.F. da Cunha, Study of polycrystalline $Cu_2ZnSnS_4$ films by Raman scattering, J. Alloys Compd. 509 (2011) 7600-7606. https://doi.org/10.1016/j.jallcom.2011.04.097
  23. Jianjun Li, SeongYeon Kim, Dahyun Nam, et al., Tailoring the defects and Carrier density for beyond 10% efficient CZTSe thin film solar cells, Sol. Energy Mater. Sol. Cells 158 (2017) 447-455.
  24. Kong Fai Tai, Oki Gunawan, Masaru Kuwahara, et al., Fill factor losses in $Cu_2ZnSn\;(S_xSe_{1-x})_4$ solar cells: insights from physical and electrical characterization of devices and exfoliated films, Adv. Energy Mater. 6 (2016) 1501609. https://doi.org/10.1002/aenm.201501609
  25. Sergio Giraldo, Markus Neuschitzer, Thomas Thersleff, et al., Large efficiency improvement in $Cu_2ZnSnSe_4$ solar cells by introducing a superficial Ge nanolayer, Adv. Energy Mater. 00 (2015) 1-6.
  26. Yi Ren, Michael Richter, Jan Keller, et al., Investigation of the $SnS/Cu_2ZnSnS_4$ interfaces in kesterite thin-film solar cells, ACS Energy Lett. 2 (2017) 976-981. https://doi.org/10.1021/acsenergylett.7b00151
  27. Markus Neuschitzer, Yudania Sanchez, Tetiana Olar, et al., Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices, Chem. Mater. 27 (15) (2015) 5279-5287. https://doi.org/10.1021/acs.chemmater.5b01473
  28. Jie Ge, Prakash Koirala, Corey R. Grice, et al., Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant $Cu_2BaSnS_4$ thin-film solar cells, Adv. Energy Mater. (2017) 1601803.
  29. Seung Wook Shin, K.V. Gurav, Chang Woo Hong, Phase segregations and thickness of the $Mo(S,Se)_2$ layer in $Cu_2ZnSn(S,Se)_4$ solar cells at different sulfurization temperatures, Sol. Energy Mater. Sol. Cells 143 (2017) 480-487.

피인용 문헌

  1. Single step electrochemical deposition for the fabrication of CZTS kesterite thin films for solar cells vol.497, pp.None, 2019, https://doi.org/10.1016/j.apsusc.2019.143794
  2. The Influence of Removal of Secondary Phases and Dissolution By-Product from the Surface of Cu2ZnSnS4 Film on the Photoelectrochemical Response of This Film vol.167, pp.2, 2018, https://doi.org/10.1149/1945-7111/ab6cef
  3. Study on the Optimization of Cu-Zn-Sn-O to Prepare Cu2ZnSnS4 Thin Film via a Nano Ink Coating Method vol.9, pp.None, 2018, https://doi.org/10.3389/fchem.2021.675642
  4. Investigation on the properties of Cu2ZnSnSe4 and Cu2ZnSn(S,Se)4 absorber films prepared by magnetron sputtering technique using Zn and ZnS targets in precu vol.45, pp.2, 2018, https://doi.org/10.1002/er.5935