Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.3.183

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks  

Munir, Rahim (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Jung, Gwang Sun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Ko, Young Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.23, no.3, 2013 , pp. 183-189 More about this Journal
Abstract
$Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.
Keywords
CZTSe; binary selenide compounds; selenization; void; interface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorove and D. B. Mitzi, Prog. Photovoltaics: Research and Applications, 20, 6 (2012).   DOI   ScienceOn
2 S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorove and D. B. Mitzi, Energ. Environ. Sci., 5, 7060 (2012).   DOI   ScienceOn
3 B. Shin, K. Wang, O. Gunawan, K. B. Reuter, S. J. Chey, N. A. Bojarczuk, T. Todorove, D. B. Mitzi and S. Guha, in Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference(Seattle, WA, June 2011) p. 19.
4 I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich and R. Noufi, Sol. Energy Mater. Sol. Cells, 101, 154 (2012).   DOI   ScienceOn
5 R. B. V. Chalapathy, G. S. Jung and B. T. Ahn, Sol. Energy Mater. Sol. Cells, 95, 3216 (2011).   DOI   ScienceOn
6 H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, Sol. Energy Mater. Sol. Cells, 49, 407 (1997).   DOI   ScienceOn
7 Y. Wang and H. Gong, J. Alloys Compd., 509, 9627 (2011).   DOI   ScienceOn
8 Z. S. Chen, L. Han, L. Wan, C. H. Zhang, H. H. Niu and J. Z. Xu, Appl. Surf. Sci., 257, 8490 (2011).   DOI   ScienceOn
9 R. Juskenas, S. Kanapeckaite, V. Karpavitciene, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis and G. Niaura, Sol. Energy Mater. Sol. Cells, 101, 277 (2012).   DOI   ScienceOn
10 Z. H. Su, C. Yan, K.W. Sun, Z.L. Han, F.Y. Liu, J. Liu, Y.Q. Lai, J. Li, and Y.X. Liu, Appl. Surf. Sci. 258, 7678- 7682 (2012).   DOI   ScienceOn
11 M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja and E. Mellikov, Thin Solid Films, 519, 7394 (2011).   DOI   ScienceOn
12 A. Redinger, D.M. Berg, P.J. Dale, and S. Siebentritt, J. Amer. Chem. Soc. 133, 3320-3323 (2011).   DOI   ScienceOn
13 P. M. P. Salome, P. A. Fernandes and A. F. da Cunha, Thin Solid Films, 517, 2531 (2009).   DOI   ScienceOn
14 A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni and E. S. Aydil, J. Appl. Phys., 111, 9 (2012).
15 G. B. Sakr, I. S. Yahia, M. Fadel, S. S. Fouad and N. Romcevic, J. Alloys Compd., 507, 557 (2010).   DOI   ScienceOn
16 D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Cell., 95, 1421 (2011).
17 X. Wu, R. G. Dhere, D. S. Albin, T. A. Gessert, C. DeHart, J. C. Keane, A. Duda, T. J. Coutts, S. Asher, D. H. Levi, H. R. Moutinho, Y. Yan, T. Moriarty, S. Johnston, K. Emery and P. Sheldon, in Proceedings of the NCPV Program Review Meeting (Lakewood, Colorado, Oct. 2001) p. 1.
18 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovoltaics: Research and Applications, 19, 894 (2011).   DOI   ScienceOn
19 S. M. Gallego, L. B. Pena, R. A. Barcia, C. E. Azpilicueta, M. F. Lannone, E. P. Rosales, M. S. Zawoznik, M. D. Groppa and M. P. Benavides, Environ Exp. Bot., 83, 33 (2012).   DOI   ScienceOn
20 K. H. Kim and I. Amal, Electron. Mater. Lett., 7, 225 (2011).   DOI   ScienceOn
21 S. Nakamura, T. Maeda, and T. Wada, Jpn. J. Appl. Phys. 50, 6 (2011).
22 H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, in Proceedings of the Photovoltaic Science and Engineering Conferences (Miyazaki, Japan, Nov. 1996) p 745.