Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites

Ni-Cu-Zn페라이트의 損失과 磁性 特性

  • Otsuki, E. (R & D Center, SAMWHA electronics corporation) ;
  • Kim, Jeong-Su (R & D Center, SAMWHA electronics corporation)
  • 대규열부 (三和電子工業(株) 新素材硏究所) ;
  • 김정수 (三和電子工業(株) 新素材硏究所)
  • Published : 2004.12.01

Abstract

The power loss analysis was carried out for Ni-Cu-Zn ferrite sample with different content of NiO and ZnO. The power loss, Pcv decreases monotonically with increasing temperature and attains to a certain value at around 100~120 degrees Celsius. The frequency dependence of Pcv can be explained by Pcv~f$^n$, and n is independent of the frequency, f up to 1 MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss(Ph) and residual loss(Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while Pcv-Ph is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}_i$ like following equations could be formularized. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ Where ${\mu}_0$ is permeability of vacuum, I$_s$ is saturation magnetization, K$_I$ is anisotropy constant, $s_0$ is internal heterogeneous stress, ${\lambda}_s$ is magnetostriction constant, b is unknown constant, and Wh is hysteresis loss per one cycle of excitation (Ph=Wh${\times}$f). Steinmetz constant of Ni-Cu-Zn ferrite, m=1.64~2.2 is smaller than that of Mn-Zn ferrites, which suggests the difference of loss mechanisms between these materials.

NiO, ZnO 조성이 다른 Ni-Cu-Zn 페라이트의 손실 분석을 실시했다. 손실, Ph는 측정 온도의 상승에 따라 감소해 100-120$^{\circ}C$ 근처에서 일정한 값을 얻었다. Pcv의 주파수의존성은 Pcv~f$^n$ 로 표현될 수 있는데, n은 1 MHz까지 일정했다. Pcv는 ZnO/NiO비가 증가함에 따라 감소한다. Pcv를 Hysteresis loss(Ph) 및 잔류손실(Pcv-Ph)로 분리했다. Pcv의 온도특성 및 조성 의존성은 Ph에 기인하지만, Pcv-Ph는 온도 및 조성에 의존하지 않는다. Ph와 초투자율, ${\mu}_i$의 온도 및 조성 의존성을 분석해, 다음과 같은 식이 성립된다는 것을 알 수 있었다. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ 여기서, ${\mu}_0$은 진공의 투자율, I$_s$는 포화자화, K$_I$는 이방성상수, ${\sigma}_0$는 내부 불균일 응력, ${\lambda}_s$는 자기이방성 상수, b는 미지의 상수, Wh는 1주기 당의 히스테리시스 손실(Ph=Wh${\times}$f)이다. Ni-Cu-Zn 페라이트의 Steinmetz 상수 m=1.64~2.2는 Mn-Zn 페라이트보다는 적은데, 이는 양 재료 간의 손실 메커니즘의 차가 있음을 암시하는 것이다.

Keywords

References

  1. Kondo, K., Chiba, T., Yamada, S. and Otsuki, E., 2000: 'Relationship between Power Loss and Magnetization Process in Ni-Zn Ferrites', J. of Japan Society of Powder Metallurgy, 40(2), pp. 185-188
  2. Visser, E.G., Roelofsma, J.J., and Aaftink, G.J., 1989: 'Domain Wall Loss and Rotational Loss in High Frequency Power Ferrites', Proc. ICF-5, pp. 605-608
  3. Otsuki, E., 1992: 'Nanostructure and Magnetic Properties of Mn-Zn Ferrites', Proc. ICF-6, pp. 59-64
  4. Kondo, K., Chiba. T., Otsuki, E. and Yamada, S., 1999: 'Analysis of Power Loss in Mn-Zn Ferrites', Tokin Technical Review, 26, pp. 1-5
  5. Hiraga, T, Okutani, K. and Oshima, T, 1986: 'Ferrites', Maruzen(Japan), p.26
  6. Chikazumi, S., 1987: 'Physics of Ferromagnetic Materials', 2, Shoukabou, p. 247
  7. Chikazumi, S. 1987: 'Physics of Ferromagnetic Materials', 2, Shoukabou, p. 274
  8. Sakaki, Y. and Matsuoka, T., 1996: 'Hysteresis loss in MnZn Ferrite Core', IEEE Trans. Magn., pp. 623-625
  9. Fujiwara, T. Ishii, M. and Otsuki, E., 1996: 'The Analysis of Iron Loss Properties in Fe-S-AI Alloy Powder Core', Proc. of 2000 Powder Metallurgy World Congress, pp. 1405-1408
  10. Boerekamp, J.G. and Visser, E.G., 1996: 'Grain Size Dependency of the Steinmetz Coefficient of Soft Ferrite Power Loss', Proc. ICF-7 Abstract, p. 263