• 제목/요약/키워드: Zn-In-Sn-O

검색결과 289건 처리시간 0.025초

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun;Park, Jin-Ah;Lee, Su-Jae;Zyung, Tae-Hyoung
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.636-641
    • /
    • 2009
  • ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서 (High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer)

  • 김상우;박소영;한태희;이세형;한예지;이문석
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

기전력법에 의한 용융 ZR-(In, Sn) 합금의 활동도 측정 (Activity Measurement in Liquid Zn-(In, Sn) Alloy Using E.M.F Method)

  • 정우광
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.47-53
    • /
    • 2005
  • The E.M.F. of the galvanic cell with fused salt was measured to determine the activities of zinc at 720-860 K over the entire composition range of liquid Zn-In and Zn-Sn alloys. The cell used was as follows: $$(-)W{\mid}Zn(pure){\mid}Zn^{2+}(KCl-LiCl){\mid}Zn(in\;Zn-In\;or\;Zn-Sn\;alloy){\mid}W(+)$$ The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy and entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-In and Zn-Sn alloys are found to be close tn the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy were calculated from the experimental results.

Characterization of a Crystallized ZnO/CuSn/ZnO Multilayer Film Deposited with Low Temperature Magnetron Sputtering

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.169-172
    • /
    • 2009
  • The ZnO/CuSn/ZnO (ZCSZ) multilayer films were deposited on polycarbonate substrates using reactive RF and DC magnetron sputtering. The thickness of each layer was 50 nm/5 nm/45 nm, respectively. The ZCSZ films showed a sheet resistance of $44{\Omega}$/Sq, which was an order of magnitude lower than that indium tin oxide (ITO) films. Although the ZCSZ films had a CuSn interlayer that absorbed visible light, both films had similar optical transmittances of 74% in the visible wavelength region. The figure of merit of the ZCSZ films was $1.0{\times}10^{-3}{\Omega}^{-1}$ and was greater than the value of the ITO films, $1.6{\times}10^{-4}{\Omega}^{-1}$. From the X-ray diffraction (XRD) analysis, the ITO films did not show any diffraction peaks, whereas the ZCSZ films showed diffraction peaks for the ZnO (100) and (002) phases. The hardness of the ITO and ZCSZ films were 5.8 and 7.1 GPa, respectively, which were determined using nano-indentation. From these results, the ZCSZ films exhibited greater optoelectrical performance and hardness compared to the conventional ITO films.

Effects of Ta addition in Co-sputtering Process for Ta-doped Indium Tin Oxide Thin Film Transistors

  • 박시내;손대호;김대환;강진규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.334-334
    • /
    • 2012
  • Transparent oxide semiconductors have recently attracted much attention as channel layer materials due to advantageous electrical and optical characteristics such as high mobility, high stability, and good transparency. In addition, transparent oxide semiconductor can be fabricated at low temperature with a low production cost and it permits highly uniform devices such as large area displays. A variety of thin film transistors (TFTs) have been studied including ZnO, InZnO, and InGaZnO as the channel layer. Recently, there are many studies for substitution of Ga in InGaZnO TFTs due to their problem, such as stability of devices. In this work, new quaternary compound materials, tantalum-indium-tin oxide (TaInSnO) thin films were fabricated by using co-sputtering and used for the active channel layer in thin film transistors (TFTs). We deposited TaInSnO films in a mixed gas (O2+Ar) atmosphere by co-sputtering from Ta and ITO targets, respectively. The electric characteristics of TaInSnO TFTs and thin films were investigated according to the RF power applied to the $Ta_2O_5$ target. The addition of Ta elements could suppress the formation of oxygen vacancies because of the stronger oxidation tendency of Ta relative to that of In or Sn. Therefore the free carrier density decreased with increasing RF power of $Ta_2O_5$ in TaInSnO thin film. The optimized characteristics of TaInSnO TFT showed an on/off current ratio of $1.4{\times}108$, a threshold voltage of 2.91 V, a field-effect mobility of 2.37 cm2/Vs, and a subthreshold swing of 0.48 V/dec.

  • PDF

Chracteristics of TCO with dopant in $In_2O_3-ZnO-SnO_2$

  • 원주연;최병현;지미정;서한;남태방
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.79-79
    • /
    • 2009
  • Samples of Ta-doped in $In_2O_3-ZnO-SnO_2$(IZTO) with a doping level up to 4wt% were sintered at $1600^{\circ}C$ in $O_2$. The crystal phase of the samples was identified by an X-ray diffraction experiment. apparent density and porosity with sintered temperature from $1500^{\circ}C$ to $1640^{\circ}C$ are mesured by archimedes method. For each sample, the specific resistivity was determined. samples of sintered at $1600^{\circ}C$ had the highest density and lowest porousity and The Ta 0.25-wt%-doped IZTO ceramics had the lowest resistivity.

  • PDF

RF-마그네트론 스퍼터링에 의해 제조된 In1.6Zn0.2Sn0.2O3-δ 박막의 투과율 및 전기 전도성에 미치는 증착 온도의 영향 (Effect of the Deposition Temperature on the Transmittance & Electrical Conductivity of In1.6Zn0.2Sn0.2O3-δ Thin Films Prepared by RF-magnetron Sputtering)

  • 서한;지미정;안용태;주병권;최병현
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.663-668
    • /
    • 2012
  • In order to reduce the indium contents in transparent conducting oxide(TCO) thin films of $In_{1.6{\sim}1.8}Zn_{0.2}Sn_{0.2{\sim}0.4}O_3$ (IZTO), $In_{1.6}Zn_{0.2}Sn_{0.2}O_{3-{\delta}}$(IZTO) was prepared by replacing indium with Zn and Sn. The TCO films were deposited via RF-magnetron sputtering of the IZTO target at various deposition temperatures and its film characteristics were investigated. When deposited in an Ar atmosphere at $400^{\circ}C$, the electrical resistivity of the film decreased to $6.34{\times}10^{-4}{\Omega}{\cdot}cm$ and the optical transmittance was 80%. As the deposition temperature increased, the crystallinity of the IZTO film was enhanced. As a result, the electrical conductivity and transmittance properties were improved. This demonstrates the possibility of replacing ITO TCO film with IZTO.

Mn-Zn 훼라이트의 $GeO_{2}$$SnO_{2}$ 첨가효과 (Doping Effects with $GeO_{2}$ and $SnO_{2}$ in Mn-Zn Ferrites)

  • 최용석;유병두;김종오
    • 한국자기학회지
    • /
    • 제2권2호
    • /
    • pp.99-104
    • /
    • 1992
  • 상용의 Mn-Zn 훼라이트에 $GeO_{2}$$SnO_{2}$를 0.05, 0.3, 1.0 wt% 첨가하여 투자율의 온도특성, 손실인자 및 미세구조변화를 X-선 회절분석기, 주사전자현미경 및 LCR meter를 이용하여 관찰 하였다. $SnO_{2}$, $GeO_{2}$의 첨가량이 증가함에 따라, 투자율의 SPM(Secondary Peak Maximum)는 약 $80^{\circ}C$로부터 상온이하로 이동하였다. 미세구조의 현격한 변화없이 수반된 이러한 SPM의 이동은 이온 반경이 다른 Sn과 Ge이 주격자에 고용되었기 때문으로 판단된다. 투자율 및 손실인자의 주파수 의존성은 투자율이 100 kHz까지 모든조성에서 큰 변화가 없음을 알수있었고 손실인자는 10 kHz에서 최대값을 얻을 수 있었다.

  • PDF

마그네트론 2원 동시 방전법을 이용하여 증착한 ISZO 및 IZSO 박막의 특성에 관한 연구 (Characteristics of ISZO and IZSO films deposited using magnetron co-sputtering system by two cathodes)

  • 이동엽;이정락;이건환;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.91-92
    • /
    • 2007
  • In-Sn-Zn-O (ISZO)박막과 In-Zn-Sn-O (IZSO)박막은 상온에서 2개의 캐소드 (DC, RF)를 이용하여 마그네트론 2원 동시 방전법에 의해 polyethylene terephthalate (PET)기판 위에 실온에서 증착되었다. ISZO 박막의 경우, Zn함량이 증가함에 따라 비저항은 증가하였지만, Zn원자의 도입에 의해 표면 조도는 개선되었다. 반면, IZSO 박막의 경우, 최저비저항 ($3.17$ ${\times}$ $10^{-4}$ ${\Omega}cm$)은 $SnO_2$ 타켓의 RF power 40W에서 얻어졌지만, Sn원자의 도입에 의해 표면 조도는 거칠어졌다. XRD 측정 결과 모든 박막은 비정질 구조로 사료되고, 가시광선 영역에서 80% 이상의 높은 투과율을 보였다.

  • PDF

대기 분위기의 알루미나 도가니 내에서 Zn 분말의 산화에 의해 합성된 ZnO 나노분말 (ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere)

  • 이근형
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.861-866
    • /
    • 2010
  • Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.