Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.09.861

ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere  

Lee, Geun-Hyoung (Department of Materials & Components Engineering, Dong-eui University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.9, 2010 , pp. 861-866 More about this Journal
Abstract
Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.
Keywords
nanostructured materials; vapor deposition; optical properties; scanning electron microscopy (SEM); ZnO tetrapod;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. B. Lee, S. Cho, and H. Kwon, Met. Mater. Int. 15, 649 (2009).   DOI   ScienceOn
2 S. W. Kim, S. Fujita, H. K. Park, B. Yang, H. K. Kim, and D. H. Yoon, J. Cryst. Growth 292, 306 (2006) .   DOI   ScienceOn
3 W. I. Park, Met. Mater. Int. 14, 659 (2008).   DOI   ScienceOn
4 B. Q. Cao, M. Lorenz, A. Rahm, H. Wenckstem, C. Czekalla, J. Lenzner, G. Benndorf, and M. Grundmann, Nanotechnology 18, 455707 (2007).   DOI   ScienceOn
5 F. Wang, Z. Ye, D. Ma, L. Zhu, and F. Zhuge, J. Cryst. Growth 274, 447 (2005).   DOI   ScienceOn
6 K. Zheng, C. X. Xu, G. P. Zhu, X. Li, J. P. Liu, Y. Yang, and X. W. Sun, Physica E 40, 2677 (2008).   DOI   ScienceOn
7 B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002).   DOI   ScienceOn
8 J. Ling, C. Chun, J. Zhang, Y. Huang, F. J. Shi, X. X. DIng, C. Tang, and S. R. Qi, J. Solid State Chem. 178, 819 (2005).   DOI   ScienceOn
9 Y. Dai, Y. Zhang, and Z. L. Wang, Solid State Commun. 126, 619 (2003).
10 W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 203, 186 (1999).   DOI   ScienceOn
11 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992).   DOI
12 N. Ozaki, Y. Ohno, and S. Takada, Appl. Phys. Lett. 73, 3700 (1998).   DOI   ScienceOn
13 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. allant, J. A. Voigt, and B. E. Grande, J. Appl. Phys. 79, 7983 (1996).   DOI   ScienceOn